首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A study was conducted on a Coastal Plain flatwoods site in Florida to determine the effects of common forestry herbicides on Longleaf pine seedling survival and growth and on the understory vegetation. Following removal of the overstory slash pine, five low‐rate herbicide treatments were applied over the top of planted Longleaf pine seedlings to provide short‐term understory vegetation control and accelerate seedling growth. The objective was to increase Longleaf pine growth by reducing the shrub competition while increasing the herbaceous ground cover. Despite causing reduction in seedling survival over the control treatment, imazapyr (0.21 ae kg/ha) resulted in the highest seedling growth (height and volume). The significant reduction of shrub cover, density, and height by imazapyr was believed to be responsible for the improved seedling growth in this treatment. Both hexazinone (0.56 ai kg/ha) and sulfometuron methyl (0.26 ai kg/ha) + hexazinone (0.56 ai kg/ha) treatments also reduced cover of Runner oak, a major shrub species, but the response was evident only 8 months after treatment. Although sulfometuron methyl (0.26 ai kg/ha) and sulfometuron methyl + hexazinone treatments did not result in any significant change in overall grass, forb, and shrub cover, both treatments resulted in greater Longleaf pine growth compared to the control. None of the herbicides significantly affected the major understory grasses and forbs. Overall, imazapyr provided the best desired results with significant increase in seedling growth and better control of shrub species with no significant effects on grass and other herbaceous species cover.  相似文献   

2.
3.
Shrub encroachment can follow grazing or burning release in páramo grasslands. While encroachment decreases herbaceous species richness in some grassland systems, the effects of this process on the herbaceous community in páramo grasslands are currently unknown. We collected data on shrub cover, herbaceous‐species cover and species composition in a páramo grassland 12 years after release from burning and cattle grazing near Zuleta, Ecuador. Topographic and soil measures were also included as predictor variables of differences in community composition. Contrary to studies in other systems, shrub cover did not have a significant effect on herbaceous‐species richness, whereas shrub‐species richness significantly increased with shrub cover. However, shrub cover was associated with significant shifts in herbaceous–community composition. Most notably, there was an increase in some shade‐tolerant forbs and tall‐statured wetland grasses with increasing shrub cover, and a corresponding decrease in some short‐statured grasses and early successional forbs. These results could indicate that the ameliorative effects of shrubs (e.g. frost and wind protection) in harsh alpine environments may partially compensate for the expected competitive effect of shrubs due to shading.  相似文献   

4.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

5.
Extensive degraded short tussock grasslands of New Zealand's eastern South Island were dominated by woody vegetation prior to burning and livestock grazing associated with human settlement starting 800 years ago. There is increasing interest in restoring some of these grasslands back to a woody state. However, because of the long time frames involved in establishing a woody cover, it is difficult to predict the impacts that woody restoration will have on the extant herbaceous flora. Using a factorial trial with artificial shade and grazing exclusion, we assessed the potential impact of woody restoration on the structure and composition of the herbaceous flora over a six‐year period. The imposition of artificial shade resulted in significant increases in total species richness and the total cover of herbaceous vegetation, increases in cover of several individual forb and grass species and decreases in the cover of bare ground, moss and lichen in shade treatments. There were also changes in the overall community composition of shaded treatments reflecting these changes in vegetation cover and species richness. We found no statistically significant effects of grazing exclusion. We suggest that increased soil moisture resulting from shade addition plays an important role in increasing the herbaceous component of the flora. While woody restoration will have a range of effects on the herbaceous understorey, for example through competition and changes in soil conditions, our findings are important for planning future woody restoration in these degraded tussock grasslands. In particular, our results suggest that the best approach to ensure the persistence of herbaceous vegetation in woody restorations might be to ensure that restoration plantings result in a spatially heterogeneous vegetation arrangement.  相似文献   

6.
The removal of conifers from aspen (Populus tremuloides) stands is being undertaken throughout the western United States to restore aspen for local‐ and landscape‐level biodiversity. Current practices include mechanically removing conifers or hand thinning, piling, and burning cut conifers in and adjacent to aspen‐conifer stands. To evaluate the effectiveness of restoration treatments, we examined tree regeneration and herbaceous vegetation cover in thinned, thinned and pile burned, and non‐thinned control stands. Growth rates of small conifer saplings threatening to outcompete and replace aspen were also measured. Two to four years after pile burning, herbaceous vegetation cover within the footprint of burned piles (i.e. burn scars) was 35–73% of that in adjacent areas. Aspen was more likely to regenerate inside burn scars where fewer surrounding trees were true firs. Conifer seedlings were more likely to regenerate in burn scars where more of the surrounding trees were conifers (pine or fir) as opposed to aspen. Fir saplings had much slower growth than did aspen saplings. Overall, our findings show that restoration treatments are promoting desirable outcomes such as enhancing aspen regeneration but that follow‐up treatments will be needed to remove numerous conifer seedlings becoming established after restoration activities. Eliminating conifers, while they are small, growing slowly, and contributing little to fuel loads may be an economical way to prolong restoration treatment effectiveness.  相似文献   

7.
Question: What are the effects of fire season and intensity on resprouting of different root‐crown bearing shrub species in second‐growth Pinus palustris (longleaf pine) savannas? Location: northern Florida and eastern Louisiana, USA. Methods: In Florida, quadrats were burned biennially either during the dormant season or the growing season. In Louisiana, we applied intensity treatments to quadrats by manipulating ground‐cover fuels, just prior to biennial growing season fires. Maximum fire temperatures were measured, and stem densities were censused before and after fires in both regions. Results: After dormant season fires in Florida, stem densities were seven times greater than initial levels for Hypericum spp. In contrast, growing season fires reduced densities of H. brachyphyllum by 65%, but did not change densities of H. microsepalum. Only resprouting of H. microsepalum decreased with increased fire intensity. In Louisiana, fire intensity influenced Ilex vomitoria, but not Quercus spp. Following fires, stem densities oil. vomitoria were five times greater in fuel removal than fuel addition areas. Conclusions: Past use of dormant season fires likely contributed to increased abundances of some species of root‐crown bearing shrubs observed today in old‐growth savannas. Reintroduction of growing season fires will be effective in maintaining or decreasing stem densities, depending on species and fuel type. Genet mortality and stem density reductions appear most likely in areas at localized scales where tree falls and needle coverage create hotspots in Pinus palustris savannas.  相似文献   

8.
Question: How are dynamics of early‐seral post‐fire vascular plant and bryoid (terrestrial mosses, lichens, and fungi) vegetation impacted by reforestation activities, particularly manual vegetation removal and planting density? Does the relationship between vegetation dynamics and vegetation removal differ between harsh (west‐facing) and moderate (east‐facing) aspects? Location: Five high‐severity burn plantation forests of Pseudotsuga menziesii in southwestern Oregon, USA. Methods: Plantations severely burned in a recent wildfire were planted with conifer seedlings as a four‐species mixture or a monoculture, at two different densities, with and without manual vegetation removal. A subset of plots was also planted on a contrasting aspect within each plantation. The contrasting aspects differed in potential solar insolation and were indicative of moderate (eastern exposure) and harsh (western exposure) site conditions. Covers of shrub, herbaceous and bryoid vegetation layers were measured during reforestation activities 2–4 yr after the fire. Dynamics of structural layer cover and community composition were compared among treatments with analysis of variance and multivariate analyses (non‐metric multidimensional scaling and blocked multi‐response permutation procedure). Results: Structural layer cover and community composition differed between areas that received reforestation treatments and untreated areas. However, variability within treatments in a plantation was greater than variability within treatments across plantations. Effects of vegetation removal on composition and structure were more evident than effects of planting or altering planting density. Vegetation removal decreased cover of tall and low shrub and the bryoid layer, and increased herbaceous layer cover. Bryoid community and low shrub structural layer responses were more pronounced on moderate aspects than on harsh aspects. Vegetation removal shifted vascular plant community composition towards exotic and annual species. Conclusions: These reforestation treatments may be implemented without substantially altering early‐seral vegetation community composition dynamics, especially in areas with harsh site conditions. Site conditions, such as aspect, should be evaluated to determine need and potential effects of reforestation before implementation. Monitoring for exotic species establishment should follow reforestation activities.  相似文献   

9.
Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire‐resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short‐ and long‐term (12 yr post‐fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated‐winter fires (three in 5 yr), (2) repeated‐summer fires (two in 3 yr), and (3) alternate‐season fires (two winter and one summer in 4 yr), compared with a no‐fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate‐season fire treatment caused a long‐term increase in C4 mid‐grass cover and functional group diversity. The repeated‐summer fire treatment increased C4 short‐grass cover but also caused a long‐term increase in bare ground. The repeated winter fire treatment had no long‐term effects on perennial grass cover. Mesquite post‐fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid‐grasses. However, the repeated‐summer fire treatment may have been too extreme and caused post‐fire herbaceous composition to “over‐shift” toward less productive C4 short‐grasses rather than C4 mid‐grasses. This study provides some of the first long‐term data showing a possible benefit of mixing seasonal fires (i.e., the alternate‐season fire treatment) in a prescribed burning management plan to restore C4 mid‐grass cover and enhance overall herbaceous diversity.  相似文献   

10.
ABSTRACT The ecological effects of land-use practices on reptiles, especially endangered or threatened species, are of conservation and scientific interest. We describe the effects of rotational livestock grazing and prescribed winter burning on resources and survival of the Texas horned lizard (Phrynosoma cornutum) during the summers of 1998 to 2001 in southern Texas, USA. We evaluated survival rates of Texas horned lizards (n = 111) on 6 study sites encompassing 5 different burning and grazing treatments. We also measured indices of cover (i.e., vegetation) and food abundance (i.e., harvester ants [Pogonomyrmex rugosus]). We telemetered and relocated adult lizards daily. We divided the study into 2 seasons, spring (15 Apr–30 Jun) and summer (1 Jul–15 Aug), corresponding to the relative activity of horned lizards. Winter burning provided an increase in food resources and led to increased survival of Texas horned lizards in the second growing season after fire, but grazing-induced changes in vegetation cover reduced survival, likely by increasing lizard vulnerability. Fire and grazing reduced litter and increased bare ground and forb cover but did not affect woody vegetation. Ant activity was greater in burned sites and varied with grazing level, season, and year. Summer survival functions of horned lizards varied by burning treatment, with higher survival observed on burned sites in the second year after burning. Survival rates were ordered from highest in ungrazed sites to lowest in heavily grazed sites. We recognize the limitations of our work resulting from a lack of spatial replication of treatments. However, our mensurative study provides fertile ground for future hypothesis testing regarding the effects of land management on shrubland and grassland reptiles. We propose that future studies focus on the population consequences of variation in burn frequency, burn timing, and grazing intensity.  相似文献   

11.
12.
Questions: How are heathland vegetation dynamics affected by different goat grazing management? Location: Cantabrian heathlands in Illano, Asturias, northern Spain. Methods: During 4 years, vegetation dynamics (structural composition, canopy height and floristic diversity) were studied under three goat grazing treatments with three replicates: high stocking rate (11.7 goats ha?1) with a local Celtiberic breed, and high (15 goats ha?1) and low (6.7 goats ha?1) stocking rates with a commercial Cashmere breed. Results: The relative cover of woody plants, particularly heather species, decreased more while herbaceous cover increased more under local Celtiberic than under Cashmere breed grazing. Within Cashmere treatments, the cover and height of live shrubs decreased more and the herbaceous cover increased more under high than under low stocking rate. Redundancy analysis showed a significant effect of treatment × year interaction on floristic composition. Greater species richness was recorded under local goat grazing, but Shannon diversity index fell in the fourth year on these plots because of dominance by two grass species. Conclusions: Local Celtiberic goat grazing at such a high stocking rate (11.7 goats ha?1) hinders the development of sustainable systems on these heathlands, both in environmental and productive terms, owing to the limitations in soil fertility. Nevertheless, Celtiberic goats could be useful for controlling excessive shrub encroachment and reducing fire hazard. Cashmere goat grazing at high stocking rate promoted the highest Shannon diversity by generating a better balance between woody and herbaceous plants, while shrub dominance was not altered under the low stocking rate.  相似文献   

13.
ABSTRACT As quality of forested habitat declines from altered fire regimes, gopher tortoises (Gopherus polyphemus) often move into ruderal areas to the detriment of the animal and land manager. We evaluated effects of a dormant-and-growing-season prescribed fire on habitat and gopher tortoise use of degraded longleaf pine (Pinus palustris) forests surrounding military training areas. We burned 4 of 8 sites in winter 2001–2002 and again in April 2003. Changes in vegetation measured during 2001–2004 indicated that burn treatments did not increase herbaceous vegetation. Similarly, movement patterns, burrow usage, and home range of tortoises radiotracked from 2002–2004 did not differ between treatments. Woody cover initially was reduced in the forests postburn, and we found more new burrows in burned forest sites. Once shrub cover was reduced, tortoises started using forested habitat that had become overgrown. However, shrub reduction may be temporary, as woody stem densities increased postburn. Thus, the one-time use of fire to manage tortoise habitat may not rapidly restore the open canopy, sparse woody midstory, and abundant herbaceous vegetation that this species requires. Repeated prescribed fires or additional management techniques may be needed for complete restoration.  相似文献   

14.
Recent arctic warming experiments have recorded significant vegetation responses, typically an increase in shrub cover and a loss of species richness. We report similar changes in vegetation along an arctic mountainside in northern Sweden over 20 years. During this time mean annual temperature increased by 2.0 °C, and growing season temperature by 2.3 °C. Growing season length increased by 28% at the bottom of our study area, in birch forest, and by 175% on the mountaintop. Neither total vegetation cover nor the cover of bare ground changed. One common dwarf shrub, Empetrum hermaphroditum , and two common forbs, Viola biflora and Geranium sylvaticum , increased in abundance over time, but no common species moved up the gradient. Species richness declined significantly over time, with an average loss of two species per 50 cm × 100 cm plot. The richness of herbaceous species at intermediate altitudes decreased significantly with increasing shrub cover. In spite of large changes in temperature, the type and magnitude of vegetation change along this mountainside were relatively modest and consistent with those from wide-spread warming experiments.  相似文献   

15.
Henkin  Z.  Seligman  N.G.  Kafkafi  U.  Prinz  D. 《Plant and Soil》1998,202(2):317-326
Dwarf-shrub communities of Sarcopoterium spinosum dominate large areas of the landscape on hilly, eastern Mediterranean rangelands. Colonisation of new areas depends on the establishment of seedlings that must compete for water with the ubiquitous annual herbaceous species during the spring-winter growing season and also survive the first hot, dry summer. The present study investigated the role of the herbaceous vegetation patches growing between S. spinosum shrubs on the depletion of soil water during the critical transition period between the cool, rainy season and the dry summer. Dense and sparse herbaceous vegetation stands were established in S. spinosum dwarf-shrub communities by differential use of fertiliser on two contrasting soil types – a terra rossa overlying hard limestone where seedling establishment is low and a pale rendzina overlying a soft chalk substrate where seedling establishment is high. Soil water in the main root zone of the herbaceous vegetation between the shrubs was monitored with protected gypsum block sensors permanently placed at two depths (10 and 33 cm). Soil water depletion during the transition from the wet to the dry season was significantly more rapid under dense vegetation only on the terra rossa soil where the herbaceous vegetation also matured more rapidly than on the rendzina soil. However, in both habitats and under both dense and sparse vegetation, soil water depletion during the transition period left very little available water in the rooting zone of the herbaceous vegetation to maintain shrub seedlings throughout the summer. It was concluded that the difference in shrub seedling establishment success in the two habitats mainly reflects the differences in accessibility of water below the rooting zone of the herbaceous vegetation growing on the two contrasting soil types.  相似文献   

16.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term.  相似文献   

17.
One of the largest and rarest Bebb willow (Salix bebbiana) communities in the United States occurs at Hart Prairie, Arizona. Low recruitment of the willow over the past several decades has been linked to inadequate soil water content for seed germination and seedling establishment. We tested a hypothesis that a prescribed burn would reduce biomass of and evapotranspiration by herbaceous plants, thereby increasing soil water content. Three treatments (unburned control, early‐growing season burned, late‐growing season burned) were applied in year 2001 to replicated plots in fern‐ and grass‐dominated herbaceous communities. Soil water content (0–30 cm) was measured weekly in plots during the 2001, 2002, and 2003 growing seasons. Both early‐ and late‐season burning reduced herbaceous biomass in the fern‐dominated community in 2002 and 2003 and reduced biomass in the grass‐dominated community in 2002 but not in 2003. Soil water content increased for approximately four weeks in 2001 following the early‐season burn, but the early‐season and late‐season burns reduced soil water content in both communities over much of the 2002 and 2003 growing seasons. Thus, early‐season burning may benefit willow seed germination by increasing soil water content immediately following burning but be detrimental to germination in the second and third growing seasons after burning because of drier soil. Large temporal variation in the effect of prescribed burning on soil water content will complicate the use of fire as a restoration tool to manage soil water available for threatened plants such as Bebb willow and for recharge of groundwater.  相似文献   

18.
Transforming a shrubland into a dehesa system may be useful for recovering certain productive and regulatory functions of ecosystems such as grazing potential, soil erosion control, and also for reducing the risk of wildfire. However, the productivity of the herbaceous cover and tree development in the transformed system may be limited by soil fertility, especially after wildfire events. Previous studies have shown that adequate doses of sewage sludge may improve soil fertility and facilitate plant recovery, but few studies have focused on plant biodiversity assessment. Here, we compare the effects of sewage sludge that has undergone different post‐treatments (dewatering, composting, or thermal drying) as a soil amendment used to transform a fire‐affected shrubland into a dehesa, on tree growth and pasture composition (vegetation cover, species richness, and diversity). In the short term, sewage sludge causes changes in both pasture cover and tree growth. Although no major differences in vegetation species richness and composition have been detected, fertilization using sewage sludge was shown to modify the functional diversity of the vegetation community. Rapid replacement of shrubs by herbaceous cover and ruderal plants (e.g. Bromus hordeaceus and Leontodon taraxacoides) and of the three grass species sown (Festuca arundinacea, Lolium perenne, and Dactylis glomerata) was observed, whereas N‐fixing species (leguminous) tended to be more abundant in nonfertilized soils and soils amended with composted sludge. These results indicate that sewage sludge modifies the functionality of vegetation when applied to soils, and that the response varies according to the treatment that the sludge has undergone.  相似文献   

19.
Abstract. The study of vegetation dynamics in tallgrass prairie in response to fire has focused on dormant season fire in late successional prairies. Our objective was to determine if late season fire of varying frequency results in divergent successional patterns in an early successional tallgrass prairie disturbed by grazing and cultivation. Specifically, we evaluated the influence of late‐summer fires of varying frequency on community composition and species richness. We collected vegetation and environmental data on two sites burned in the late growing‐season at varying frequencies. These communities differed in composition depending primarily on edaphic factors, time since the last burn, and year‐to‐year variation. We interpret the time effect as related to changes in species composition accompanying plant succession that followed disturbance either from cropping and heavy grazing on the loamy site or heavy grazing on the shallow site. Other unidentified factors also have a role in vegetation dynamics on this prairie. Community composition and species richness were not consistently responsive to frequency of growing‐season fires.  相似文献   

20.
Regeneration and expansion of Aristida beyrichiana and Aristida stricta (wiregrass) populations in remaining fire‐maintained Pinus palustris (longleaf pine) stands of the southeastern United States has become an objective of land managers. Although growing‐season fire is required for successful wiregrass seed production, studies examining naturally occurring wiregrass seedling dynamics are few. This study investigates how seedling survivorship is affected by season of burn, seedling size, time since germination, and proximity to adult plants. Restoration at this research site was begun in 1992 with the planting of containerized longleaf pine and wiregrass seedlings. Study plots were established in November 1997 after a growing‐season prescribed fire (June 1996) that resulted in successful seed production and seedling recruitment. Burn treatment plots included (1) no burn (control), (2) fire in the dormant season of the first year after germination (March 1998), (3) fire in the growing season of the first year after germination (August 1998), and (4) fire in the growing season of the second year after germination (July 1999). Seedling mortality increased with growing season burning and close proximity to planted adults. Natural seedling recruitment continued into the second year after initial seed‐drop in all plots, which verifies that wiregrass seed banking occurs for a minimum of 2 years after seed drop. Where wiregrass management objectives include population expansion, seedling recruits should be allowed 1 to 2 years post‐germination without growing season fire for successful establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号