首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in climate and in browsing pressure are expected to alter the abundance of tundra shrubs thereby influencing the composition and species richness of plant communities. We investigated the associations between browsing, tundra shrub canopies and their understory vegetation by utilizing a long‐term (10–13 seasons) experiment controlling reindeer and ptarmigan herbivory in the subarctic forest tundra ecotone in northwestern Fennoscandia. In this area, there has also been a consistent increase in the yearly thermal sum and precipitation during the study period. The cover of shrubs increased 2.8–7.8 fold in exclosures and these contrasted with browsed control areas creating a sharp gradient of canopy cover of tundra shrubs across a variety of vegetation types. Browsing exclusions caused significant shifts in more productive vegetation types, whereas little or no shift occurred in low‐productive tundra communities. The increased deciduous shrub cover was associated with significant losses of understory plant species and shifts in functional composition, the latter being clearest in the most productive plant community types. The total cover of understory vegetation decreased along with increasing shrub cover, while the cover of litter showed the opposite response. The cover of cryptogams decreased along with increasing shrub cover, while the cover of forbs was favoured by a shrub cover. Increasing shrub cover decreased species richness of understory vegetation, which was mainly due to the decrease in the cryptogam species. The effects were consistent across different types of forest tundra vegetation indicating that shrub increase may have broad impacts on arctic vegetation diversity. Deciduous shrub cover is strongly regulated by reindeer browsing pressure and altered browsing pressure may result in a profound shrub expansion over the next one or two decades. Results suggest that the impact of an increase in shrubs on tundra plant richness is strong and browsing pressure effectively counteracts the effects of climate warming‐driven shrub expansion and hence maintains species richness.  相似文献   

2.
Vegetation dynamics were studied from 1940 to 1978 in two grazed pastures and associated exclosures in sand sagebrush (Artemisia filifolia) dominated grassland, western Oklahoma, USA. In both pastures and one exclosure, pattern of vegetation change reflected fluctuation rather than succession. In the other exclosure, the grassland exhibited a directional change from annual grasses and forbs to dominance by perennial grasses. Rate of change was consistent during the 39 year period. Cover of grasses increased more in grazed than ungrazed areas. Grass cover was negatively correlated with high air temperatures early in the growing season. Forb cover remained relatively constant over time and shrub cover peaked during the 1960s. Abundance of annuals and cool season species was positively correlated with rainfall early in the growing season.Species diversity and richness were lowest in the ungrazed areas, as a result of increased dominance by perennial grasses such as Schizachyrium scoparium. In pastures and exclosures, richness was positively correlated with growing season precipitation. Cover of the common species differed among sample areas within years and fluctuated between years. Few general patterns emerged from correlations of environmental variables with cover of individual species. In general, vegetation dynamics in these sand sagebrush grasslands reflect a tradeoff in that total cover changes little over time because the loss of some species is compensated for by increased growth of others. Such trade-offs reflect the individualistic response of the component species within each pasture or exclosure. Although changes in growth form composition were related to climatic fluctuation, broad-scale climatic variables could not successfully predict small-scale patterns of change by individual species over time.  相似文献   

3.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

4.
Recent climate warming in the Arctic has caused advancement in the timing of snowmelt and expansion of shrubs into open tundra. Such an altered climate may directly and indirectly (via effects on vegetation) affect arctic arthropod abundance, diversity and assemblage taxonomic composition. To allow better predictions about how climate changes may affect these organisms, we compared arthropod assemblages between open and shrub‐dominated tundra at three field sites in northern Alaska that encompass a range of shrub communities. Over ten weeks of sampling in 2011, pitfall traps captured significantly more arthropods in shrub plots than open tundra plots at two of the three sites. Furthermore, taxonomic richness and diversity were significantly greater in shrub plots than open tundra plots, although this pattern was site‐specific as well. Patterns of abundance within the five most abundant arthropod orders differed, with spiders (Order: Araneae) more abundant in open tundra habitats and true bugs (Order: Hemiptera), flies (Order: Diptera), and wasps and bees (Order: Hymenoptera) more abundant in shrub‐dominated habitats. Few strong relationships were found between vegetation and environmental variables and arthropod abundance; however, lichen cover seemed to be important for the overall abundance of arthropods. Some arthropod orders showed significant relationships with other vegetation variables, including maximum shrub height (Coleoptera) and foliar canopy cover (Diptera). As climate warming continues over the coming decades, and with further shrub expansion likely to occur, changes in arthropod abundance, richness, and diversity associated with shrub‐dominated habitat may have important ecological effects on arctic food webs since arthropods play important ecological roles in the tundra, including in decomposition and trophic interactions.  相似文献   

5.
6.
Alpine snowbeds are characterized by a long-lasting snow cover and low soil temperature during the growing season. Both these key abiotic factors controlling plant life in snowbeds are sensitive to anthropogenic climate change and will alter the environmental conditions in snowbeds to a considerable extent until the end of this century. In order to name winners and losers of climate change among the plant species inhabiting snowbeds, we analyzed the small-scale species distribution along the snowmelt and soil temperature gradients within alpine snowbeds in the Swiss Alps. The results show that the date of snowmelt and soil temperature were relevant abiotic factors for small-scale vegetation patterns within alpine snowbed communities. Species richness in snowbeds was reduced to about 50% along the environmental gradients towards later snowmelt date or lower daily maximum temperature. Furthermore, the occurrence pattern of the species along the snowmelt gradient allowed the establishment of five species categories with different predictions of their distribution in a warmer world. The dominants increased their relative cover with later snowmelt date and will, therefore, lose abundance due to climate change, but resist complete disappearance from the snowbeds. The indifferents and the transients increased in species number and relative cover with higher temperature and will profit from climate warming. The snowbed specialists will be the most suffering species due to the loss of their habitats as a consequence of earlier snowmelt dates in the future and will be replaced by the avoiders of late-snowmelt sites. These forthcoming profiteers will take advantage from an increasing number of suitable habitats due to an earlier start of the growing season and increased temperature. Therefore, the characteristic snowbed vegetation will change to a vegetation unit dominated by alpine grassland species. The study highlights the vulnerability of the established snowbed vegetation to climate change and requires further studies particularly about the role of biotic interactions in the predicted invasion and replacement process.  相似文献   

7.
Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra‐boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non‐linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.  相似文献   

8.
Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning.  相似文献   

9.
Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above‐ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space‐for‐time’ approach to test the hypothesis that a shift from lower‐productivity tundra heath to higher‐productivity deciduous shrub vegetation in the sub‐Arctic may lead to a loss of soil C that out‐weighs the increase in above‐ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m?2) and forest (2.04 ± 0.25 kg m?2) plots than at heath plots (7.03 ± 0.79 kg m?2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.  相似文献   

10.
The impact of the plant pathogen Phytophthora cinnamomi and the fungicide phosphite on species assemblages, richness, abundance and vegetation structure was quantified at three sites in Kwongkan communities in the Southwest Australian Floristic Region. Healthy and diseased vegetation treated with phosphite over 7–16 years was compared with non‐treated healthy and diseased vegetation. After site differences, disease had the greatest effect on species assemblages, species richness and richness within families. Disease significantly reduced cover in the upper and lower shrub layers and increased sedge and bare ground cover. Seventeen of 21 species assessed from the families Ericaceae, Fabaceae, Myrtaceae and Proteaceae were significantly less abundant in non‐treated diseased vegetation. In diseased habitats, phosphite treatment significantly reduced the loss of shrub cover and reduced bare ground and sedge cover. In multivariate analysis of species assemblages, phosphite‐treated diseased plots grouped more closely with healthy plots. Seven of 17 susceptible species were significantly more abundant in phosphite‐treated diseased plots compared with diseased non‐treated plots. The abundance of seven of 10 Phytophthora‐susceptible species was significantly higher along transects in phosphite‐treated vegetation. Comparison of the floristics of healthy non‐treated with healthy‐treated plots showed no significant differences in species assemblages. Of 21 species assessed, three increased in abundance and only one decreased significantly in phosphite‐treated healthy plots. In three Kwongkan communities of the SWAFR, P. cinnamomi had a profound impact on species assemblages, richness, abundance and vegetation structure. There was no evidence of adverse effects of phosphite treatment on phosphorus‐sensitive species, even after fire. Treatment with phosphite enhanced the survival of key susceptible species and mitigated disease‐mediated changes in vegetation structure. In the absence of alternative methods of control in native communities, phosphite will continue to play an important role in the protection of high priority species and communities at risk of extinction due to P. cinnamomi.  相似文献   

11.
1. Rapid warming has facilitated an increase in deciduous shrub cover in arctic tundra. Because shrubs create a cooler microclimate during the growing season, shrub cover could modulate the effects of global warming on the phenology and activity of ectotherms, including arthropods. This possibility was explored here using two dominant arthropod groups (flies and wolf spiders) in Alaskan tundra. 2. We monitored arthropods with pitfall traps over five summers at four sites that differed in shrub abundance, and used generalised additive mixed models (GAMMs) to separate the two underlying components of pitfall trap catch: the seasonal trend in arthropod density and the effects of short‐term weather variation (air temperature, wind speed, rainfall, solar radiation) on arthropod activity. 3. We found that shrub cover significantly altered the seasonal trend in the abundance of flies by reducing early‐season pitfall catch, in line with observed later snowmelt in shrub‐dominated plots at these sites. 4. Additionally, shrub cover modulated the effects of many weather variables on arthropod activity: shrub cover shifted wolf spiders' temperature–activity relationship, dampened the positive effect of solar radiation on the activity of arthropods in total, and ameliorated the negative effect of wind on the activity of flies. 5. Thus, these results indicate that shrub encroachment will probably be accompanied by altered arthropod responses to warming and other key weather variables. Because the rate of key ecological processes – herbivory, decomposition, predation – are controlled by activity at the organismal level, these effects on arthropods will have long‐term ecosystem‐level consequences.  相似文献   

12.
Aim Predictions of aquatic ecosystem change with global warming require basic data that accurately reflect the environmental conditions underlying species distributions. However, in remote arctic areas such baseline data are scarce. We assess the influence of environmental variables on chironomid distribution and taxon richness in shallow, isothermal lakes in a poorly studied arctic region. We pay particular attention to community variation along the treeline ecotonal zone where many environmental variables change abruptly in a relatively small area. Location Lake transect in Finnish Lapland spanning from boreal coniferous forest to arctic tundra. Methods Chironomid assemblages were determined from surface‐sediment samples of 50 shallow (< 10 m) natural lakes. Abundance and taxon richness data were related to 24 limnological variables using canonical ordination techniques (DCA, CCA, RDA). A Monte Carlo permutation procedure was used to assess the explanatory power of single variables. Between‐vegetation zone differences of richness were tested for statistical significance using one‐way anova . Results In total, 7771 chironomid head capsules were identified, consisting of 13 species, 10 species groups, four subgenera, 41 genera, four genus groups, five types and three with uncertain taxonomic affiliation. A hump‐shaped relationship between taxon richness and elevation was noted along the study transect with a peak in taxon richness occurring in mountain birch woodland lakes at middle elevations, decreasing then towards both warmer and colder ends of the elevation/temperature gradient. Of the individual parameters, sediment organic content, total organic carbon, pH, and lake‐specific air temperature accounted for the greatest amount of variation in the chironomid data. Main conclusions Maximum taxon richness occurred at mid‐elevations where aquatic algae also reached their maximum diversity. This area coincides with an ecotonal transitional zone, which seems more likely to account for the peak in species richness. Our study demonstrates that the factors most strongly affecting chironomids in Finnish Lapland (i.e. temperature, and ecosystem features) are those that with great probability will also change as a result of future climate change. This will likely have an effect on the distribution of chironomids in subarctic and arctic areas.  相似文献   

13.
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air‐photo studies have documented recent changes in high‐latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24‐year (1986–2010) Landsat time series in a latitudinal transect across the boreal forest‐tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last 40 years. Using a per‐pixel (30 m) trend analysis, 30% of the observable (cloud‐free) land area experienced a significant (P < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak‐summer conditions. The average NDVI trend (0.007 yr?1) corresponds to a leaf‐area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer. Across the entire transect, the area‐averaged LAI increase was ~0.2 during 1986–2010. A higher area‐averaged LAI change (~0.3) within the shrub‐tundra portion of the transect represents a 20–60% relative increase in LAI during the last two decades. Our Landsat‐based analysis subdivides the overall high‐latitude greening trend into changes in peak‐summer greenness by cover type. Different responses within and among shrub, graminoid, and tree‐dominated cover types in this study indicate important fine‐scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low‐biomass vegetation types over multi‐decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.  相似文献   

14.
Aim  Evidence is accumulating of a general increase in woody cover of many savanna regions of the world. Little is known about the consequences of this widespread and fundamental ecosystem structural shift on biodiversity.
Location  South Africa.
Methods  We assessed the potential response of bird species to shrub encroachment in a South African savanna by censusing bird species in five habitats along a gradient of increasing shrub cover, from grassland/open woodland to shrubland dominated by various shrub species. We also explored historical bird species population trends across southern Africa during the second half of the 20th century to determine if any quantifiable shifts had occurred that support an ongoing impact of shrub encroachment at the regional scale.
Results  At the local scale, species richness peaked at intermediate levels of shrub cover. Bird species composition showed high turnover along the gradient, suggesting that widespread shrub encroachment is likely to lead to the loss of certain species with a concomitant decline in bird species richness at the landscape scale. Finally, savanna bird species responded to changes in vegetation structure rather than vegetation species composition: bird assemblages were very similar in shrublands dominated by Acacia mellifera and those dominated by Tarchonanthus camphoratus .
Main conclusions  Shrub encroachment might have a bigger impact on bird diversity in grassland than in open woodland, regardless of the shrub species. Species recorded in our study area were associated with historical population changes at the scale of southern Africa suggesting that shrub encroachment could be one of the main drivers of bird population dynamics in southern African savannas. If current trends continue, the persistence of several southern African bird species associated with open savanna might be jeopardized regionally.  相似文献   

15.
Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature.  相似文献   

16.
Effects of experimental warming on shoot developmental growth and biomass production were preliminarily investigated in two evergreen dwarf shrubs Empetrum nigrum and Loiseleuria procumbens, using the International Tundra Experiments open-top chamber (OTC) method, in the Tateyama Range, central Japan. An OTC was installed over shrub (E. nigrum and L. procumbens) -dominated vegetation and over shrub-forb (such as Anemone narcissiflora var. nipponica and Solidago virga-aurea ssp. leiocarpa) mixed vegetation, and stem samples of the evergreen shrubs were obtained at 26 months after installing the OTC. The OTC increased the daily mean temperature by 0.1°C to 1.8°C, on average, during the growing season. Shoot developmental growth and biomass production were considerably different between species of different vegetation types. The boreal species E. nigrum generally showed better growth inside the OTC than the arctic and subarctic species L. procumbens. Both species showed significantly larger shoot elongation and biomass production inside the OTC over shrub-dominated vegetation, whereas smaller or reduced growth was detected inside the OTC over shrub-forb mixed vegetation. The variations of growth responses to warming between species of different vegetation types are discussed, especially in relation to interspecific competition under a simulated environmental change.  相似文献   

17.
Abstract. We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above‐ground biomass, species richness and composition. The N:P ratio of the vegetation did not show any relationship with species richness. The N:P ratio of the soil was related with species richness for both vegetation types. Species richness in the tussock tundra was most strongly correlated with soil calcium content and soil pH, with a strong correlation between these two factors. N:P ratio of the soil was also correlated with soil pH. Other factors correlated with species richness were soil moisture and Sphagnum cover. Organic matter content was the factor most strongly correlated with species richness in the wet sedge vegetation. N:P ratio of the soil was strongly correlated with organic matter content. We conclude that N:P ratio in the vegetation is not an important factor determining species richness in arctic tundra and that species richness in arctic tundra is mainly determined by pH and flooding. In tussock tundra the pH, declining with soil age, in combination with Sphagnum growth strongly decreases species richness, while in wet sedge communities flooding over long periods of time creates less favourable conditions for species richness.  相似文献   

18.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

19.
We used snow fences and small (1 m2) open‐topped fiberglass chambers (OTCs) to study the effects of changes in winter snow cover and summer air temperatures on arctic tundra. In 1994, two 60 m long, 2.8 m high snow fences, one in moist and the other in dry tundra, were erected at Toolik Lake, Alaska. OTCs paired with unwarmed plots, were placed along each experimental snow gradient and in control areas adjacent to the snowdrifts. After 8 years, the vegetation of the two sites, including that in control plots, had changed significantly. At both sites, the cover of shrubs, live vegetation, and litter, together with canopy height, had all increased, while lichen cover and diversity had decreased. At the moist site, bryophytes decreased in cover, while an increase in graminoids was almost entirely because of the response of the sedge Eriophorum vaginatum. These community changes were consistent with results found in studies of responses to warming and increased nutrient availability in the Arctic. However, during the time period of the experiment, summer temperature did not increase, but summer precipitation increased by 28%. The snow addition treatment affected species abundance, canopy height, and diversity, whereas the summer warming treatment had few measurable effects on vegetation. The interannual temperature fluctuation was considerably larger than the temperature increases within OTCs (<2°C), however. Snow addition also had a greater effect on microclimate by insulating vegetation from winter wind and temperature extremes, modifying winter soil temperatures, and increasing spring run‐off. Most increases in shrub cover and canopy height occurred in the medium snow‐depth zone (0.5–2 m) of the moist site, and the medium to deep snow‐depth zone (2–3 m) of the dry site. At the moist tundra site, deciduous shrubs, particularly Betula nana, increased in cover, while evergreen shrubs decreased. These differential responses were likely because of the larger production to biomass ratio in deciduous shrubs, combined with their more flexible growth response under changing environmental conditions. At the dry site, where deciduous shrubs were a minor part of the vegetation, evergreen shrubs increased in both cover and canopy height. These changes in abundance of functional groups are expected to affect most ecological processes, particularly the rate of litter decomposition, nutrient cycling, and both soil carbon and nitrogen pools. Also, changes in canopy structure, associated with increases in shrub abundance, are expected to alter the summer energy balance by increasing net radiation and evapotranspiration, thus altering soil moisture regimes.  相似文献   

20.
Fire is known to facilitate the invasion of many non-native plant species, but how invasion into burnt areas varies along environmental gradients is not well-understood. We used two pre-existing data sets to analyse patterns of invasion by non-native plant species into burnt areas along gradients of topography, soil and vegetation structure in Yosemite National Park, California, USA. A total of 46 non-native species (all herbaceous) were recorded in the two data sets. They occurred in all seven of the major plant formations in the park, but were least common in subalpine and upper montane conifer forests. There was no significant difference in species richness or cover of non-natives between burnt and unburnt areas for either data set, and environmental gradients had a stronger effect on patterns of non-native species distribution, abundance and species composition than burning. Cover and species richness of non-natives had significant positive correlations with slope (steepness) and herbaceous cover, while species richness had significant negative correlations with elevation, the number of years post-burn, and cover of woody vegetation. Non-native species comprised a relatively minor component of the vegetation in both burnt and unburnt areas in Yosemite (percentage species = 4%, mean cover < 6.0%), and those species that did occur in burnt areas tended not to persist over time. The results indicate that in many western montane ecosystems, fire alone will not necessarily result in increased rates of invasion into burnt areas. However, it would be premature to conclude that non-native species could not affect post-fire succession patterns in these systems. Short fire-return intervals and high fire severity coupled with increased propagule pressure from areas used heavily by humans could still lead to high rates of invasion, establishment and spread even in highly protected areas such as Yosemite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号