首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Actin‐based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin‐regulating protein, Eps8, is recruited to the spine head during chemically induced long‐term potentiation in culture and that inhibition of its actin‐capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin‐capping activity in spine morphogenesis and plasticity and indicate that reductions in actin‐capping proteins may characterize forms of intellectual disabilities associated with spine defects.  相似文献   

2.
Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.  相似文献   

3.
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two‐photon microscopy to investigate the effect of a selective PDE9 inhibitor PF‐04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF‐04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF‐04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF‐04449613 treatment over 1–7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF‐04449613 increases synaptic calcium activity and learning‐dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018  相似文献   

4.
Role of actin cytoskeleton in dendritic spine morphogenesis   总被引:1,自引:0,他引:1  
Dendritic spines are the postsynaptic receptive regions of most excitatory synapses, and their morphological plasticity play a pivotal role in higher brain functions, such as learning and memory. The dynamics of spine morphology is due to the actin cytoskeleton concentrated highly in spines. Filopodia, which are thin and headless protrusions, are thought to be precursors of dendritic spines. Drebrin, a spine-resident side-binding protein of filamentous actin (F-actin), is responsible for recruiting F-actin and PSD-95 into filopodia, and is suggested to govern spine morphogenesis. Interestingly, some recent studies on neurological disorders accompanied by cognitive deficits suggested that the loss of drebrin from dendritic spines is a common pathognomonic feature of synaptic dysfunction. In this review, to understand the importance of actin-binding proteins in spine morphogenesis, we first outline the well-established knowledge pertaining to the actin cytoskeleton in non-neuronal cells, such as the mechanism of regulation by small GTPases, the equilibrium between globular actin (G-actin) and F-actin, and the distinct roles of various actin-binding proteins. Then, we review the dynamic changes in the localization of drebrin during synaptogenesis and in response to glutamate receptor activation. Because side-binding proteins are located upstream of the regulatory pathway for actin organization via other actin-binding proteins, we discuss the significance of drebrin in the regulatory mechanism of spine morphology through the reorganization of the actin cytoskeleton. In addition, we discuss the possible involvement of an actin-myosin interaction in the morphological plasticity of spines.  相似文献   

5.
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.  相似文献   

6.
The therapeutic hypothermia is an effective tool for TBI‐associated brain impairment, but its side effects limit in clinical routine use. Hypothermia up‐regulates RNA‐binding motif protein 3 (RBM3), which is verified to protect synaptic plasticity. Here, we found that cognitive and LTP deficits, loss of spines, AD‐like tau pathologies are displayed one month after TBI in mice. In contrast, the deficits of LTP and cognitive, loss of spines and tau abnormal phosphorylation at several sites are obviously reversed in TBI mice combined with hypothermia pre‐treatment (HT). But, the neuroprotective role of HT disappears in TBI mouse models under condition of blocking RBM3 expression with RBM3 shRNA. In other hand, overexpressing RBM3 by AAV‐RBM3 plasmid can mimic HT‐like neuroprotection against TBI‐induced chronic brain injuries, such as improving LTP and cognitive, loss of spines and tau hyperphosphorylation in TBI mouse models. Taken together, hypothermia pre‐treatment reverses TBI‐induced chronic AD‐like pathology and behaviour deficits in RBM3 expression dependent manner, RBM3 may be a potential target for neurodegeneration diseases including Alzheimer disease.  相似文献   

7.
Processing of Aβ‐precursor protein (APP) plays an important role in Alzheimer's disease (AD) pathogenesis. The APP intracellular domain contains residues important in regulating APP function and processing, in particular the 682YENPTY687 motif. To dissect the functions of this sequence in vivo, we created an APP knock‐in allele mutating Y682 to Gly (APPYG/YG mice). This mutation alters the processing of APP and TrkA signaling and leads to postnatal lethality and neuromuscular synapse defects when expressed on an APP‐like protein 2 KO background. This evidence prompted us to characterize further the APPYG/YG mice. Here, we show that APPYG/YG mice develop aging‐dependent decline in cognitive and neuromuscular functions, a progressive reduction in dendritic spines, cholinergic tone, and TrkA levels in brain regions governing cognitive and motor functions. These data are consistent with our previous findings linking NGF and APP signaling and suggest a causal relationship between altered synaptic connectivity, cholinergic tone depression and TrkA signaling deficit, and cognitive and neuromuscular decline in APPYG/YG mice. The profound deficits caused by the Y682 mutation underscore the biological importance of APP and indicate that APPYG/YG are a valuable mouse model to study APP functions in physiological and pathological processes.  相似文献   

8.
Dendritic spines are multifunctional integrative units of the nervous system and are highly diverse and dynamic in nature. Both internal and external stimuli influence dendritic spine density and morphology on the order of minutes. It is clear that the structural plasticity of dendritic spines is related to changes in synaptic efficacy, learning and memory and other cognitive processes. However, it is currently unclear whether structural changes in dendritic spines are primary instigators of changes in specific behaviors, a consequence of behavioral changes, or both. In this review, we first examine the basic structure and function of dendritic spines in the brain, as well as laboratory methods to characterize and quantify morphological changes in dendritic spines. We then discuss the existing literature on the temporal and functional relationship between changes in dendritic spines in specific brain regions and changes in specific behaviors mediated by those regions. Although technological advancements have allowed us to better understand the functional relevance of structural changes in dendritic spines that are influenced by environmental stimuli, the role of spine dynamics as an underlying driver or consequence of behavior still remains elusive. We conclude that while it is likely that structural changes in dendritic spines are both instigators and results of behavioral changes, improved research tools and methods are needed to experimentally and directly manipulate spine dynamics in order to more empirically delineate the relationship between spine structure and behavior.  相似文献   

9.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   

10.
Transient and persistent dendritic spines in the neocortex in vivo   总被引:23,自引:0,他引:23  
Dendritic spines were imaged over days to months in the apical tufts of neocortical pyramidal neurons (layers 5 and 2/3) in vivo. A fraction of thin spines appeared and disappeared over a few days, while most thick spines persisted for months. In the somatosensory cortex, from postnatal day (PND) 16 to PND 25 spine retractions exceeded additions, resulting in a net loss of spines. The fraction of persistent spines (lifetime > or = 8 days) grew gradually during development and into adulthood (PND 16-25, 35%; PND 35-80, 54%; PND 80-120, 66%; PND 175-225, 73%), providing evidence that synaptic circuits continue to stabilize even in the adult brain, long after the closure of known critical periods. In 6-month-old mice, spines turn over more slowly in visual compared to somatosensory cortex, possibly reflecting differences in the capacity for experience-dependent plasticity in these brain regions.  相似文献   

11.
Many sensory processing regions of the central brain undergo critical periods of experience‐dependent plasticity. During this time ethologically relevant information shapes circuit structure and function. The mechanisms that control critical period timing and duration are poorly understood, and this is of special importance for those later periods of development, which often give rise to complex cognitive functions such as social behavior. Here, we review recent findings in Drosophila, an organism that has some unique experimental advantages, and introduce novel views for manipulating plasticity in the post‐embryonic brain. Critical periods in larval and young adult flies resemble classic vertebrate models with distinct onset and termination, display clear connections with complex behaviors, and provide opportunities to control the time course of plasticity. These findings may extend our knowledge about mechanisms underlying extension and reopening of critical periods, a concept that has great relevance to many human neurodevelopmental disorders.  相似文献   

12.
树突棘和突触的病理改变在认知功能障碍发病机制中具有十分重要的作用,研究表明大脑发育调节蛋白(developmentregulationbrainprotein,Drebrin)能够调节树突棘和突触的形态和重塑。Drebrin的减少可能通过树突棘内细胞骨架变化,使树突棘的形态结构受到影响,导致突触功能和结构的变化。但目前阿尔茨海默病(Alzheimer’Sdisease,AD)脑内突触病理变化的具体机制及Drebrin和突触之间的关系仍不明确。探讨Drebrin与认知功能的关系及其机制,对临床上早期干预认知功能障碍、寻找AD的有效诊断治疗措施具有重要意义。  相似文献   

13.
Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.  相似文献   

14.
Duchenne muscular dystrophy (DMD) is a progressive muscle‐wasting disorder, caused by mutations in the DMD gene and the resulting lack of dystrophin. The DMD gene has seven promoters, giving rise to multiple full‐length and shorter isoforms. Besides the expression of dystrophin in muscles, the majority of dystrophin isoforms is expressed in brain and dystrophinopathy can lead to cognitive deficits, including intellectual impairments and deficits in executive function. In contrast to the muscle pathology, the impact of the lack of dystrophin on the brain is not very well studied. Here, we study the behavioral consequences of a lack of full‐length dystrophin isoforms in mdx mice, particularly with regard to domains of executive functions and anxiety. We observed a deficit in cognitive flexibility in mdx mice in the absence of motor dysfunction or general learning impairments using two independent behavioral tests. In addition, increased anxiety was observed, but its expression depended on the context. Overall, these results suggest that the absence of full‐length dystrophin in mice has specific behavioral effects that compare well to deficits observed in DMD patients.  相似文献   

15.
Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether profilins are relevant for dendritic spine morphology and synaptic plasticity.  相似文献   

16.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

17.
Dendritic spines on pyramidal neurons receive the vast majority of excitatory input and are considered electrobiochemical processing units, integrating and compartmentalizing synaptic input. Following synaptic plasticity, spines can undergo morphological plasticity, which possibly forms the structural basis for long-term changes in neuronal circuitry. Here, we demonstrate that spines on CA1 pyramidal neurons from organotypic slice cultures show bidirectional activity-dependent morphological plasticity. Using two-photon time-lapse microscopy, we observed that low-frequency stimulation induced NMDA receptor-dependent spine retractions, whereas theta burst stimulation led to the formation of new spines. Moreover, without stimulation the number of spine retractions was on the same order of magnitude as the stimulus-induced spine gain or loss. Finally, we found that the ability of neurons to eliminate spines in an activity-dependent manner decreased with developmental age. Taken together, our data show that hippocampal neurons can undergo bidirectional morphological plasticity; spines are formed and eliminated in an activity-dependent way.  相似文献   

18.
Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsβ fragments, generated by non‐amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsβ in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsβ failed to show any detectable effects on synaptic plasticity and spine density. The C‐terminal 16 amino acids of APPsα (lacking in APPsβ) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7‐nAChRs. Further, APPsα showed high‐affinity, allosteric potentiation of heterologously expressed α7‐nAChRs in oocytes. Collectively, we identified α7‐nAChRs as a crucial physiological receptor specific for APPsα and show distinct in vivo roles for APPsα versus APPsβ. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsβ.  相似文献   

19.
The human apolipoprotein ε4 allele (APOE4) has been implicated as one of the strongest genetic risk factors associated with Alzheimer’s disease (AD) and in influencing normal cognitive functioning. Previous studies have demonstrated that mice expressing human apoE4 display deficits in behavioral and neurophysiological outcomes compared to those with apoE3. Ovarian hormones have also been shown to be important in modulating synaptic processes underlying cognitive function, yet little is known about how their effects are influenced by apoE. In the current study, female adult human APOE targeted replacement (TR) mice were utilized to examine the effects of human APOE genotype and long-term ovarian hormone loss on synaptic plasticity in limbic regions by measuring dendritic spine density and electrophysiological function. No significant genotype differences were observed on any outcomes within intact mice. However, there was a significant main effect of genotype on total spine density in apical dendrites in the hippocampus, with post-hoc t-tests revealing a significant reduction in spine density in apoE3 ovariectomized (OVX) mice compared to sham operated mice. There was also a significant main effect of OVX on the magnitude of LTP, with post-hoc t-tests revealing a decrease in apoE3 OVX mice relative to sham. In contrast, apoE4 OVX mice showed increased synaptic activity relative to sham. In the lateral amygdala, there was a significant increase in total spine density in apoE4 OVX mice relative to sham. This increase in spine density was consistent with a significant increase in spontaneous excitatory activity in apoE4 OVX mice. These findings suggest that ovarian hormones differentially modulate synaptic integrity in an apoE-dependent manner within brain regions that are susceptible to neurophysiological dysfunction associated with AD.  相似文献   

20.
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号