首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
为了了解光透明剂对生物组织二次谐波成像的影响,利用二次谐波成像术(SHG) 对动脉血管组织(兔颈部动脉血管壁外膜层,含有丰富的胶原纤维)经无水甘油处理后的光透明效果进行研究.实验结果表明,经无水甘油处理后的动脉血管壁外膜层胶原纤维的二次谐波成像的成像深度和成像对比度均得到明显的改善;动脉血管组织的衰减系数降低了50 %左右,而成像深度由35 μm 提高到75 μm .这说明甘油溶液具有提高生物组织二次谐波成像深度和对比度的光透明效应.由于组织的浑浊特性使其对可见光和近红外波长具有很强的散射效应,基于激光的治疗和诊断技术受到很大限制,使用光透明剂提高组织内部的折射率匹配从而降低散射效应的方法有望在生物医学领域得到广泛应用.  相似文献   

2.
马龙  李桂林  李师鹏  蒋苏 《植物学报》2020,55(5):596-604
整体透明观察技术是植物形态发育研究的基础手段之一, 是无需制作切片直接观察植物体内部形态结构的有效方法。该技术采用高折射率介质降低光在样品中的散射, 提高光通量, 增加视野深度, 从而实现组织样品透明观察。然而透明剂能改变透明液的渗透势和pH值, 从而对细胞形态保持产生负面影响。目前, 针对植物叶片和胚珠已建立了相对成熟的整体透明观察体系, 但根尖由于细胞壁较薄, 现有的整体透明方法常导致细胞形态改变, 不确定性增加(如根尖整体形态改变和细胞发生严重的质壁分离)。该研究以拟南芥(Arabidopsis thaliana)幼苗为实验材料, 通过检测根尖形态、细胞质壁分离情况和细胞清晰度, 对常用的透明液组分、pH值和透明时间进行优化, 旨在建立一种适用于根尖等较脆弱组织材料的整体透明方法。  相似文献   

3.
植物无融合生殖的筛选和鉴定研究进展   总被引:2,自引:0,他引:2  
植物无融合生殖具有复杂的发育过程,与细胞学、遗传学、生物化学和分子生物学等相关的各种技术均被应用于植物无融合生殖的筛选和鉴定.本文结合新近发表的研究文献,介绍了常规的植物无融合生殖筛选和鉴定技术的新应用,评介了流式细胞种子筛选技术、胚珠整体透明技术、外源标记基因转入法等植物无融合生殖筛选和鉴定的新技术,并对各种筛选和鉴定技术的优势和不足进行了评述.  相似文献   

4.
组织通透方法采用高折射率化学试剂对生物组织进行渗透,改变组织的光学均匀性,可以有效地改善光学成像的穿透深度,受到生物医学光学研究领域的重视。利用光学相干层析成像技术,测量通透过程中不同测量深度下组织的散射特征的变化。通过采用系统信号对数的梯度值近似地表征光学散射系数,研究了通透过程中组织的散射特征随渗透时间和测量深度的动态关系。实验证明了组织通透可以有效地增加光子的穿透深度,并改善成像质量。研究发现:不同测量深度处组织的散射系数及其变化幅度、变化过程和变化趋势等均存在一定的差异性,并与组织的微观结构、其通透效果,化学试剂在组织中的渗透行为等有密切关系,有助于组织通透过程的理解,并为组织通透机制提供可能的实验依据。  相似文献   

5.
先进的光学纳米探针对于生物组织的光学成像、疾病的诊断和治疗具有巨大的促进作用,尤其是对于生物体分子水平活动的动态信息的深入了解。新型的光学探针如纳米金棒、上转换纳米颗粒和氧化石墨烯等,能克服传统探针的一些不足,具有较高的对比度、稳定性和生物兼容性,而且还拥有深层组织成像和实时动态成像的能力。本文对这些纳米光学探针的光学性质和优点进行了简要的介绍,并通过综述作者及其他研究者在过去几年的研究成果,总结这些先进的纳米探针在生物成像和医学诊断、治疗方面的应用,并展望其应用前景。  相似文献   

6.
光声成像及其在生物医学中的应用   总被引:5,自引:0,他引:5  
光声成像是一种新近迅速发展起来、基于生物组织内部光学吸收差异、以超声作媒介的无损生物光子成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性的优点,以超声探测器探测光声波代替光学成像中的光子检测,从原理上避开了光学散射的影响,可以提供高对比度和高分辨率的组织影像,为研究生物组织的结构形态、生理特征、代谢功能、病理特征等提供了重要手段,在生物医学临床诊断以及在体组织结构和功能成像领域具有广泛的应用前景.对光声成像技术的机理、光声成像技术和方法、光声图像重建算法以及光声成像在生物医学上的应用情况作一个简单介绍,希望有助于推动我国在该领域的科研和开发应用工作的迅速发展.  相似文献   

7.
本专刊主要由有关生物组织光学成像方面的邀稿和投稿组成。近年来 ,在高散射介质中 (尤其在生物组织中 )光输运问题被越来越广泛和深入的研究。这些研究可以开发一些新的无损而又廉价的医学光学成像技术。光学成像因其可以提供生理学功能型的医学影像 ,而引起学术界广泛的关注。光学成像主要包括漫射光断层成像、相干光断层成像 ( OCT)、早到光子技术、超声调制技术、磁光调制技术、偏振调制技术等等方面。在这些技术中 ,相干光断层成像具有较高的空间分辨率 ,技术相对比较成熟 ,但其检测深度有限。漫射光断层成像的空间分辨率是比较低的 …  相似文献   

8.
本专刊主要由有关生物组织光学成像方面的邀稿和投稿组成。近年来 ,在高散射介质中 (尤其在生物组织中 )光输运问题被越来越广泛和深入的研究。这些研究可以开发一些新的无损而又廉价的医学光学成像技术。光学成像因其可以提供生理学功能型的医学影像 ,而引起学术界广泛的关注。光学成像主要包括漫射光断层成像、相干光断层成像 ( OCT)、早到光子技术、超声调制技术、磁光调制技术、偏振调制技术等等方面。在这些技术中 ,相干光断层成像具有较高的空间分辨率 ,技术相对比较成熟 ,但其检测深度有限。漫射光断层成像的空间分辨率是比较低的 …  相似文献   

9.
整体组织透明和组织切片技术是研究植物组织和器官的结构及其发育过程的常用实验手段。该文针对本科生植物学课程的侧根、胚珠(特别是胚囊)以及胚胎发育内容设计了相应的实验教学课程。该实验以拟南芥幼苗、不同发育时期的花蕾和种子为材料,经固定、脱色和组织透明,利用正置显微镜观察侧根、胚珠以及胚胎的发育过程。根组织经透明后,在显微镜下可以清晰地观察到从侧根原基的建成到侧根发生的八个发育阶段。各个发育时期的胚珠经组织透明后,在显微镜下可以清晰地观察到大孢子母细胞、功能性大孢子(FG1期)以及FG2~FG7期的胚囊。各个发育时期的种子经透明后,在显微镜下可以清晰地观察到胚胎发育的1细胞期、8细胞期、球形期、心形期、鱼雷期、拐杖期和成熟期。这些实验结果可以使学生对拟南芥等双子叶植物的侧根、胚珠以及胚胎发育过程有较为系统的了解。该实验方法在其他较小的双子叶植物中也适用。  相似文献   

10.
生物活组织的背向二次谐波成像   总被引:5,自引:0,他引:5       下载免费PDF全文
光学二次谐波成像技术由于具有三维高分辨率、不需要荧光标记、对生物样品的杀伤效应小等特点,在生物医学研究上具有广阔的应用前景.在双光子荧光成像基础上,实现了适合对厚组织样品观测的背向光学二次谐波成像,探讨了背向二次谐波成像的特点和影响因素.通过对多种生物组织样品进行大量实验,发现胶原纤维和肌肉纤维均可以产生很强的背向二次谐波,并成功地将背向二次谐波成像技术应用于糖尿病患者皮肤的观测.背向二次谐波成像技术可望推广到病理检查等临床应用中.  相似文献   

11.
Tissue clearing and subsequent imaging of transparent organs is a powerful method to analyze fluorescently labeled cells and molecules in 3D, in intact organs. Unlike traditional histological methods, where the tissue of interest is sectioned for fluorescent imaging, 3D imaging of cleared tissue allows examination of labeled cells and molecules in the entire specimen. To this end, optically opaque tissues should be rendered transparent by matching the refractory indices throughout the tissue. Subsequently, the tissue can be imaged at once using laser-scanning microscopes to obtain a complete high-resolution 3D image of the specimen. A growing list of tissue clearing protocols including 3DISCO, CLARITY, Sca/e, ClearT2, and SeeDB provide new ways for researchers to image their tissue of interest as a whole. Among them, 3DISCO is a highly reproducible and straightforward method, which can clear different types of tissues and can be utilized with various microscopy techniques. This protocol describes this straightforward procedure and presents its various applications. It also discusses the limitations and possible difficulties and how to overcome them.  相似文献   

12.
Spheroids have emerged as in vitro models that reproduce in a great extent the architectural microenvironment found in human tissues. However, the imaging of 3D cell cultures is highly challenging due to its high thickness, which results in a light-scattering phenomenon that limits light penetration. Therefore, several optical clearing methods, widely used in the imaging of animal tissues, have been recently explored to render spheroids with enhanced transparency. These methods are aimed to homogenize the microtissue refractive index (RI) and can be grouped into four different categories, namely (a) simple immersion in an aqueous solution with high RI; (b) delipidation and dehydration followed by RI matching; (c) delipidation and hyperhydration followed by RI matching; and (d) hydrogel embedding followed by delipidation and RI matching. In this review, the main optical clearing methods, their mechanism of action, advantages, and disadvantages are described. Furthermore, the practical examples of the optical clearing methods application for the imaging of 3D spheroids are highlighted.  相似文献   

13.
Various tissue optical clearing techniques have sprung up for large volume imaging. However, there are few methods showed clearing and imaging data on different organs while most of them were focused on mouse brain, and as a result, it is difficult to select the suitable method for organs in practical applications due to lack of quantitative evaluation and comprehensive comparison. Therefore, it is necessary to evaluate and compare the performances of clearing methods for different organs. In this paper, several typical optical clearing methods were applied, including 3DISCO, uDISCO, SeeDB, FRUIT, CUBIC, ScaleS and PACT to clear intact brain, heart, kidney, liver, spleen, stomach, lung, small intestine, skin and muscle. The clearing efficiency, sample deformation, fluorescence preservation and imaging depth of these methods were quantitatively evaluated. Finally, based on the systemic evaluation of various parameters described above, the appropriate clearing method for specific organ including kidney or intestine was screened out. This paper will provide important references for selection of appropriate clearing methods in related researches.   相似文献   

14.
Three‐dimensional reconstruction of tissue structures is essential for biomedical research. The development of light microscopes and various fluorescent labeling techniques provides powerful tools for this motivation. However, optical imaging depth suffers from strong light scattering due to inherent heterogeneity of biological tissues. Tissue optical clearing technology provides a distinct solution and permits us to image large volumes with high resolution. Until now, various clearing methods have been developed. In this study, from the perspective of the end users, we review in vitro tissue optical clearing techniques based on the sample features in terms of size and age, enumerate the methods suitable for immunostaining and lipophilic dyes and summarize the combinations with various imaging techniques. We hope this review will be helpful for researchers to choose the most suitable clearing method from a variety of protocols to meet their specific needs.   相似文献   

15.
Revealing the true structure of tissues and organs with tissue slicing technology is difficult since images reconstructed in three dimensions are easily distorted. To address the limitations in tissue slicing technology, tissue clearing has been invented and has recently achieved significant progress in three-dimensional imaging. Currently, this technology can mainly be divided into two types: aqueous clearing methods and solvent-based clearing methods. As one of the important parts of this technology, organic solvent-based tissue clearing techniques have been widely applied because of their efficient clearing speed and high clearing intensity. This review introduces the primary organic solvent-based tissue clearing techniques and their applications.  相似文献   

16.
Whole‐organ and whole‐body optical tissue clearing methods allowing imaging in 3 dimensions are an area of profound research interest. Originally developed to study nervous tissue, they have been successfully applied to all murine organs, yet clearing and imaging of rat peripheral organs is less advanced. Here, a modification of CUBIC clearing protocol is presented. It provides a rapid and simple approach to clear the entire adult rat organism and thus all organs within as little as 4 days. Upgraded perfusion‐based rat CUBIC protocol preserves both anatomical structure of organs and signal from proteinaceous fluorophores, and furthermore is compatible with antibody staining. Finally, it enables also volumetric cells analyses and is tailored for staining of calcium deposits within unsectioned soft tissues.   相似文献   

17.
Photoacoustic imaging is a noninvasive imaging technique having the advantages of high‐optical contrast and good acoustic resolution at improved imaging depths. Light transport in biological tissues is mainly characterized by strong optical scattering and absorption. Photoacoustic microscopy is capable of achieving high‐resolution images at greater depth compared to conventional optical microscopy methods. In this work, we have developed a high‐resolution, acoustic resolution photoacoustic microscopy (AR‐PAM) system in the near infra‐red (NIR) window II (NIR‐II, eg, 1064 nm) for deep tissue imaging. Higher imaging depth is achieved as the tissue scattering at 1064 nm is lesser compared to visible or near infrared window‐I (NIR‐I). Our developed system can provide a lateral resolution of 130 μm, axial resolution of 57 μm, and image up to 11 mm deep in biological tissues. This 1064‐AR‐PAM system was used for imaging sentinel lymph node and the lymph vessel in rat. Urinary bladder of rat filled with black ink was also imaged to validate the feasibility of the developed system to study deeply seated organs.   相似文献   

18.
Optical clearing techniques provide unprecedented opportunities to study large tissue samples at histological resolution, eliminating the need for physical sectioning while preserving the three-dimensional structure of intact biological systems. There is significant potential for applying optical clearing to reproductive tissues. In testicular biology, for example, the study of spermatogenesis and the use of spermatogonial stem cells offer high-impact applications in fertility medicine and reproductive biotechnology. The objective of our study is to apply optical clearing, immunofluorescence, and confocal microscopy to testicular tissue in order to reconstruct its three-dimensional microstructure in intact samples. We used Triton-X/DMSO clearing in combination with refractive index matching to achieve optical transparency of fixed mouse testes. An antibody against smooth muscle actin was used to label peritubular myoid cells of seminiferous tubules while an antibody against ubiquitin C-terminal hydrolase was used to label Sertoli cells and spermatogonia in the seminiferous epithelium. Specimens were then imaged using confocal fluorescence microscopy. We were able to successfully clear testicular tissue and utilize immunofluorescent probes. Additionally, we successfully visualized the histological compartments of testicular tissue in three-dimensional reconstructions. Optical clearing combined with immunofluorescence and confocal imaging offers a powerful new method to analyze the cytoarchitecture of testicular tissue at histological resolution while maintaining the macro-scale perspective of the intact system. Considering the importance of the murine model, our developed method represents a significant contribution to the field of male reproductive biology, enabling the study of testicular function.  相似文献   

19.
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.  相似文献   

20.
Recent progress in three‐dimensional optical imaging techniques allows visualization of many comprehensive biological specimens. Optical clearing methods provide volumetric and quantitative information by overcoming the limited depth of light due to scattering. However, current imaging technologies mostly rely on the synthetic or genetic fluorescent labels, thus limits its application to whole‐body visualization of generic mouse models. Here, we report a label‐free optical projection tomography (LF‐OPT) technique for quantitative whole mouse embryo imaging. LF‐OPT is based on the attenuation contrast of light rather than fluorescence, and it utilizes projection imaging technique similar to computed tomography for visualizing the volumetric structure. We demonstrate this with a collection of mouse embryo morphologies in different stages using LF‐OPT. Additionally, we extract quantitative organ information applicable toward high‐throughput phenotype screening. Our results indicate that LF‐OPT can provide multi‐scale morphological information in various tissues including bone, which can be difficult in conventional optical imaging technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号