首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kojic acid synthesis genes regulation was investigated in Aspergillus oryzae. Our results indicate that kojic acid production was lost in the laeA disruption strain, but was recovered in the LaeA complement strain. Real-time PCR also confirmed that expression of kojic acid biosynthesis genes decreased in the laeA disruption strain, indicating that these genes are under the control of LaeA.  相似文献   

3.
冯慧云  邢伟  胡昌华 《微生物学报》2011,51(9):1141-1145
全局调控在丝状真菌次级代谢调控及其生长发育过程中有着重要的作用。LaeA是2004年首次在构巢曲霉中被发现的第一个丝状真菌全局性调控因子,继而在烟曲霉、黄曲霉、产黄青霉、橘青霉中相继被报道。LaeA能够全局性调控抗生素和真菌毒素等次级代谢产物的合成,影响真菌形态分化,另外还通过影响沉默基因的表达从而调控未知代谢产物的产生,因而能为真菌中天然产物的开发提供新的重要途径。本文就其在丝状真菌中的发现、功能、作用机制及其应用等方面进行综述。  相似文献   

4.
5.

Background

Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi.

Methodology/Principal Findings

Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding.

Conclusions/Significance

Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats. Induced fungal defence responses thus need to be included if we wish to have a complete conception of animal-fungus co-evolution, fungal gene regulation, and multitrophic interactions.  相似文献   

6.
Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and sclerotia or fruiting body formation. The velvet family shares a protein domain that is present in most parts of the fungal kingdom from chytrids to basidiomycetes. Most of the current knowledge derives from the model Aspergillus nidulans where VeA, the founding member of the protein family, was discovered almost half a century ago. Different members of the velvet protein family interact with each other and the nonvelvet protein LaeA, primarily in the nucleus. LaeA is a methyltransferase-domain protein that functions as a regulator of secondary metabolism and development. A comprehensive picture of the molecular interplay between the velvet domain protein family, LaeA and other nuclear regulatory proteins in response to various signal transduction pathway starts to emerge from a jigsaw puzzle of several recent studies.  相似文献   

7.
Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.  相似文献   

8.
9.
Penicillium chrysogenum is not only an industrially important filamentous fungus for penicillin production, but it also represents as a promising cell factory for production of natural products. Development of efficient transformation systems with suitable selection markers is essential for genetic manipulations in P. chrysogenum. In this study, we have constructed a new and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system with two different selection markers conferring the resistance to nourseothricin and phleomycin for P. chrysogenum. Under the optimized conditions for co-cultivation at 22 °C for 60 h with acetosyringone concentration of 200 μM, the transformation efficiency of the ATMT system could reach 5009 ± 96 transformants per 106 spores. The obtained transformants could be exploited as the T-DNA insertion mutants for screening genes involved in morphogenesis and secondary metabolism. Especially, the constructed ATMT system was applied successfully to generate a knockout mutant of the laeA regulatory gene and relevant complementation strains in a wild strain of P. chrysogenum. Our results indicated that the LaeA regulator controls growth, sporulation, osmotic stress response and antibiotic production in P. chrysogenum, but its function is reliant on nitrogen sources. Furthermore, we showed that the laeA orthologous genes from the citrus postharvest pathogen P. digitatum and from the industrial fungus Aspergillus niger could recover the phenotypic defects in the P. chrysogenum laeA deletion mutant. Conclusively, this work provides a new ATMT system, which can be employed for T-DNA insertional mutagenesis, heterologous gene expression or for molecular inspections of potential genes related to secondary metabolism in P. chrysogenum.  相似文献   

10.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   

11.
12.
Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.  相似文献   

13.
14.
The global regulatory protein LaeA is known for regulating the production of many kinds of secondary metabolites in Aspergillus species, as well as sexual and asexual reproduction, and morphology. In Aspergillus carbonarius, it has been shown that LaeA regulates production of ochratoxin. We have investigated the regulatory effect of LaeA on production of citric acid and cellulolytic enzymes in A. carbonarius. Two types of A. carbonarius strains, having laeA knocked out or overexpressed, were constructed and tested in fermentation. The knockout of laeA significantly decreased the production of citric acid and endoglucanases, but did not reduce the production of beta-glucosidases or xylanases. The citric acid accumulation was reduced with 74–96 % compared to the wild type. The endoglucanase activity was reduced with 51–78 %. Overexpression of LaeA seemed not to have an effect on citric acid production or on cellulose or xylanase activity.  相似文献   

15.
LaeA是在构巢曲霉中首次鉴定的一种全局调控因子,其同源蛋白在丝状真菌中广泛存在,具有高度的保守性。LaeA及其同源蛋白序列存在S-腺苷甲硫氨酸结合基序,是一种甲基转移酶,可能影响组蛋白修饰,导致染色体结构的改变,进而调控一系列基因的表达。大量研究表明,LaeA及其同源蛋白参与调控丝状真菌多种次级代谢产物的生物合成,影响丝状真菌的生长发育和形态分化,甚至在丝状真菌生产有机酸和一些工业酶的过程中也发挥着重要作用。本文综述了LaeA及其同源蛋白的作用机制,以及该蛋白在丝状真菌次级代谢、生长发育和其他重要生物过程中的作用,并对存在的问题及应用前景进行讨论与展望。  相似文献   

16.
《Trends in microbiology》2023,31(5):511-520
Several families of potassium (K+) channels are found in membranes of all eukaryotes, underlining the importance of K+ uptake and redistribution within and between cells and organs. Among them, TOK (tandem-pore outward-rectifying K+) channels consist of eight transmembrane domains and two pore domains per subunit organized in dimers. These channels were originally studied in yeast, but recent identifications and characterizations in filamentous fungi shed new light on this fungus-specific K+ channel family. Although their actual function in vivo is often puzzling, recent works indicate a role in cellular K+ homeostasis and even suggest a role in plant–fungus symbioses. This review aims at synthesizing the current knowledge on fungal TOK channels and discussing their potential role in yeasts and filamentous fungi.  相似文献   

17.
18.
19.
VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet) complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells), which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号