首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Archaea represent a significant portion of biomass in the marine sediments and may play an important role in global carbon cycle. However, the identity and composition of deep sea sediment Archaea are unclear. Here, we used the archaeal 16S rRNA gene primers to determine the diversity and community structure of Archaea from shallow water (<100 m) and deep water (>1500 m) sediments in the South China Sea. Phylogenetically the archaeal community is separated between the shallow- and deep sea sediments, with the former being dominated by the Thaumarchaeota and the latter by the Marine Benthic Group B, E and the South African GoldMine Euryarchaeotal Group as well as Thaumarchaeota. Sand content showed significant correlation with Thaumarchaeota, suggesting that the porous media may create an oxic environment that allowed these aerobic organisms to thrive in the surface sediments. The carbon isotope composition of total organic carbon was significantly correlated to the distribution of archaeal groups, suggesting that Archaea overall may be constrained by the availability or sources of organic carbon in the sediments of the South China Sea.  相似文献   

2.
To extend comparative metagenomic analyses of the deep-sea, we produced metagenomic data by direct 454 pyrosequencing from bathypelagic plankton (1000 m depth) and bottom sediment of the Sea of Marmara, the gateway between the Eastern Mediterranean and the Black Seas. Data from small subunit ribosomal RNA (SSU rRNA) gene libraries and direct pyrosequencing of the same samples indicated that Gamma- and Alpha-proteobacteria, followed by Bacteroidetes, dominated the bacterial fraction in Marmara deep-sea plankton, whereas Planctomycetes, Delta- and Gamma-proteobacteria were the most abundant groups in high bacterial-diversity sediment. Group I Crenarchaeota/Thaumarchaeota dominated the archaeal plankton fraction, although group II and III Euryarchaeota were also present. Eukaryotes were highly diverse in SSU rRNA gene libraries, with group I (Duboscquellida) and II (Syndiniales) alveolates and Radiozoa dominating plankton, and Opisthokonta and Alveolates, sediment. However, eukaryotic sequences were scarce in pyrosequence data. Archaeal amo genes were abundant in plankton, suggesting that Marmara planktonic Thaumarchaeota are ammonia oxidizers. Genes involved in sulfate reduction, carbon monoxide oxidation, anammox and sulfatases were over-represented in sediment. Genome recruitment analyses showed that Alteromonas macleodii ‘surface ecotype'', Pelagibacter ubique and Nitrosopumilus maritimus were highly represented in 1000 m-deep plankton. A comparative analysis of Marmara metagenomes with ALOHA deep-sea and surface plankton, whale carcasses, Peru subsurface sediment and soil metagenomes clustered deep-sea Marmara plankton with deep-ALOHA plankton and whale carcasses, likely because of the suboxic conditions in the deep Marmara water column. The Marmara sediment clustered with the soil metagenome, highlighting the common ecological role of both types of microbial communities in the degradation of organic matter and the completion of biogeochemical cycles.  相似文献   

3.
Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.  相似文献   

4.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

5.
Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.  相似文献   

6.
Nematode biomass and allometric attributes (size spectra, body length and width, morphotypes) were measured and related to the environmental quality of sediments of the Genoa-Voltri commercial harbour (Ligurian Sea, NW Mediterranean) to investigate their possible use as ecological indicators. The sediment quality was defined by measuring the level of organic enrichment (quantity and biochemical composition of sedimentary organic matter) and oxygen stress (redox potential).Nematode biomass spectra (NBS) proved to be extremely valuable in determining differences in the environmental quality of sediments on a hundred-metre spatial scale. High peaks of the NBS were observed in the more organic-rich and oxygen-stressed stations probably in relation to a lower diversity of the nematode communities in these stations, with the predominance of tolerant genera such as Paracomesoma and Sabatieria. Among allometric variables, the length was found to be negatively correlated with oxygen concentrations and positively with TOM percentages, whilst the morphotype length/width ratio (L/W) resulted negatively related to oxygen concentrations and organic matter quality (protein:carbohydrate ratio), suggesting that these allometric attributes represent indicators of the functional adaptation of nematodes to the changing environmental conditions.We suggest that in contrast to time-consuming and expertise-requiring nematode taxonomic analysis, biomass and allometric attributes analysis can provide a simpler but comparable tool to assess sediment quality and environmental heterogeneity of harbour ecosystems.  相似文献   

7.
The Northern Baffin Bay between Greenland and Canada is a remote Arctic area restricted in primary production by seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial activities in its sediments. Our aim was to study the so far unknown subseafloor geochemistry and microbial populations driving seafloor ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate reduction and methane production rates. Sediments in the central deep area and on the southern slope contained less organic carbon and overall lower microbial numbers. Similar 16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the sites investigated. Sulfate in pore water correlated with dsrA copy numbers of sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas in the sediments, and mcrA copy numbers of methanogenic Archaea were low. Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial communities adapted to their specific environmental conditions.  相似文献   

8.
Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes.  相似文献   

9.
The Salton Sea, a hypersaline lake located in Southern California, is a major habitat for migratory waterfowl, including endangered species, recently threatened by selenium toxicity. Selenium is both an essential micronutrient and a contaminant and its speciation and cycling are driven by microbial activity. In the absence of oxygen, microorganisms can couple the oxidation of organic matter with the reduction of soluble selenate and selenite to elemental selenium. In order to better understand and quantify selenium cycling and selenium transfer between water and underlying sediments in the Salton Sea, we measured the maximum potential selenate reduction rates (R max) and selenate adsorption isotherms in sediments collected from seven littoral locations in July 2011. We also measured salinity, organic carbon, nitrogen, and elemental selenium content and the abundance of selenate-reducing prokaryotes at each site. Our results showed a high potential for selenate reduction and limited selenate adsorption in all studied sites. Maximum potential selenate reduction rates were affected by sediment Corg content. We showed that selenate reduction potential of Salton Sea sediments far outweighs current dissolved inputs to the lake. Selenate reduction is thus a likely driver for selenium removal from the lake’s water and selenate retention in littoral sediments of the Salton Sea.  相似文献   

10.
Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

11.
The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection.  相似文献   

12.
南海西沙海槽表层沉积物微生物多样性   总被引:9,自引:1,他引:8  
李涛  王鹏  汪品先 《生态学报》2008,28(3):1166-1173
利用非培养的分子技术研究了西沙海槽表层沉积物中的微生物群落.沉积物中扩增的古菌16S rDNA 序列分属两个大类:泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota).以Marine Crenarchaeotic GroupⅠ (古菌16S rDNA文库的49.2%)和Terrestrial Miscellaneous Euryarchaeotal Group (16.9%)为主要类群;其余为Marine Benthic Group B (9.7%)、 Marine Benthic Group A (4%)、 Marine Benthic Group D (1.6%)、Novel Euryarchaeotic Group (0.8%)和 C3(0.8%).细菌克隆子多样性明显高于古菌,16S rDNA序列分别来自变形杆菌(Proteobacteria)(细菌16S rDNA文库的30.5%)、浮霉菌(Planctomycetes)(20.3%)、放线菌(Actinobacteria)(14.4%)、厚壁菌(Firmicutes)(15.3%)、屈桡杆菌(Chloroflexi)(8.5%)、酸杆菌(Acidobacteria)(3.4%)、candidate division OP8 (2.5%)、拟杆菌/绿菌(Bacterioidetes/Chlorobi)(1.7%)和疣微菌(Verrucomicrobia)(1.7%).变形杆菌为优势类群(包括Alpha-和Delta-Proteobacteria亚群).多数克隆子为未培养细菌和古菌.结果表明南海表层沉积物中蕴含大量未知的微生物资源.  相似文献   

13.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

14.
Benthic bacterial communities in the ocean comprise the vast majority of prokaryotes on Earth and play crucial roles in the biogeochemical cycles and remineralization of organic matter. Despite the importance of the benthic bacterial communities in the ecosystem, no previous investigations of the bacterial community of sediments from the Australian-Antarctic ridge (AAR) have been conducted to date. In this study, the composition of the bacterial community in the surface sediments from AAR was revealed by the 454 pyrosequencing method. Bacterial communities inhabiting the sediments of AAR were highly diverse, covering 39 distinct major lineages of bacteria. Among them, Gammaproteobacteria, Planctomycetes, Actinobacteria, Deltaproteobacteria, Acidobacteria, Alphaproteobacteria, Chloroflexi, Bacteroidetes, Chlorobi, and Gemmatimonadetes were dominant, accounting for 85–88 % of the bacterial community. The 16S rDNA sequences of major OTUs with 1 % or higher relative abundance showed high similarity (96.6–100 %) with uncultured environmental sequences that were primarily recovered from the sediments of various areas of the Arctic, Southern, Atlantic, Indian, and Pacific Oceans. As the first report of the bacterial community of marine sediments in the AAR region, the results presented herein suggest that members of the predominant phyla are well adapted to the environment of marine sediment and that the low variability in the bacterial communities of deep-sea sediments might reflect the similar environmental conditions among various regions of the deep sea.  相似文献   

15.
Cao H  Hong Y  Li M  Gu JD 《Antonie van Leeuwenhoek》2011,100(4):545-556
In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious community structure shift for both AOA and beta-AOB from the coastal marginal areas to the slope in the deep-sea was detected, while the OTU numbers of AOA amoA were more stable than those of the beta-AOB. The OTUs of beta-AOB increased with the distance from the coastal margin areas to the slope in the deep-sea. Beta-AOB showed lower diversity with dominant strains in a polluted area but higher diversity without dominant strains in a clean area. Moreover, the diversity of beta-AOB was correlated with pH values, while no noticeable relationships were established between AOA and physicochemical parameters. Beta-AOB was more sensitive to transect environmental variability and might be a potential indicator for environmental changes. Additionally, the surface sediments surveyed in the South China Sea harboured diverse and distinct AOA and beta-AOB phylotypes different from other environments, suggesting the endemicity of some nitrifying prokaryotes in the South China Sea.  相似文献   

16.
Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.The vast majority of cultured Archaea isolates are characterized as extremophiles, which thrive under environmental extremes of temperature, pH, salinity, and oxygen availability. Unlike Bacteria, these organisms are well defined by select physiologies or catabolic activities. Cultivated halophilic archaea are obligate aerobes, and with a few exceptions (58), most 16S rRNA gene sequences affiliated with this physiological group have been recovered primarily from environments with oxygen present. Thermophilic archaea, many of which utilize hydrogen-based metabolisms, have temperature requirements that preclude their survival and growth in more moderate environments. Other archaeal physiological groups include acidophiles, which thrive in acidic and mostly high-temperature environments, the obligate anaerobic methanogens, which are capable of competing with Bacteria when more energetically favorable electron acceptors are not available (i.e., sulfate), and methane-oxidizing archaea, which require methane for energy production. Recent work on several Crenarchaeota isolates points to nitrification as their primary energy metabolism, but these organisms have been detected in cold, predominantly aerobic environments, such as open ocean waters and soil (47), and in hyperthermophilic environments (24).Several archaeal groups identified using only 16S rRNA genes, for which no current isolates exist, have been detected in anaerobic sediments of the marine subsurface (6), estuaries (42), freshwater (46), and salt lakes (29). While their physiology and catabolism remain a source of speculation, the environmental distribution patterns of these mesophilic, presumably anaerobic, groups seemingly exclude the physiological and catabolic types outlined above. That is, the persistence of diverse archaeal populations in anoxic sediments at moderate temperature and salinity and at circumneutral pH with only trace levels of methane strongly suggests that alternative metabolic or physiological activities must characterize these populations.Saline lakes are ubiquitous and can be found on all continents. Although many saline lakes are labeled “extreme” environments, microbial diversity within their sediments is often equivalent to that reported for studies of freshwater and marine systems (28). Most studies of the microbial ecology within saline lakes have focused on gradients within the water column, with very few studies on patterns within the sediments. Specifically, these studies have examined how changes in water column salinity lead to shifts in microbial productivity and diversity (8). However, particle-associated microbial communities are known to differ fundamentally from water column or free-living populations (1, 18). These observed differences could be explained by the type and strength of environmental gradients that microbial communities in sediments experience, as opposed to those encountered by pelagic communities.Sediments contain strong environmental gradients, such as time (e.g., sediment age at depth), nutrient and carbon availability, and the dominant terminal electron-accepting process (TEAP) resulting from the sequential use of available oxidants by the microbial community (41). These gradients can lead to changes in the dominant microbial groups (i.e., a shift from sulfate reducers to methanogens with depth and age). Many saline lakes are highly productive and shallow and experience large fluctuations in water level due to climatic changes or to changes in inflows due to urban and agricultural activities. Changes in lake level can lead to dramatic shifts in mixing regimens, nutrient cycling, and water chemistry. Historic fluctuations in water column salinity are often recorded within the sediments in the form of evaporite deposits, which may act as additional sources of ionic loading of the water column (62). These sedimentary salinity gradients may modulate the metabolic activity of some microbial groups. For example, Oren (44) proposed bioenergetic constraints as a possible explanation for the reduced activity or absence of some microbial groups within high-salinity environments. Thus, saline lake sediments are excellent natural laboratories in which to study changes and adaptations of microbial communities due to large-scale changes in environmental gradients.The Salton Sea is a large (980 km2), eutrophic, moderately hypersaline (48 to 50 g liter−1), terminal lake located 69 m below sea level in the Salton Basin, CA. Several large lakes have formed in the Salton Basin over geologic history, the most recent of which was Lake Cahuilla ca. 300 years ago (7). The current lake was unintentionally created in 1905-1907, when the Colorado River flooded the Salton Basin for a period of 16 months. Profundal sediments are highly sulfidic, and sulfate reduction is suspected to be the dominant TEAP within these sediments (54). Based on elemental analysis (51) and 137Cs activity (37) of sediment layers, a depth of ∼22 cm marks the point when flooding of the Salton Basin occurred. Sediment above this depth represents the ca. 102 years of historical change within the Salton Sea, including a shift from a water column salinity of 35 g liter−1 to the hypersaline conditions that currently exist. Sediments below this depth consist of low-carbon, gypsum-rich evaporite deposits that were present on the older dry lake bed prior to the formation of the current lake. A previous study reported several strong geochemical gradients within pore water across this relatively small depth range (62).In this work, a suite of cultivation-independent techniques and geochemical analyses was utilized to correlate shifts in abundance, community structure, and diversity of Archaea and Bacteria in Salton Sea sediments with changes in environmental gradients. Large differences in abundance and community structure patterns of Archaea and Bacteria were found along the gradients. In addition, the majority of archaeal sequences retrieved were affiliated with previously described but as yet uncultivated groups identified from various marine sedimentary environments. This indicates that these groups are able to tolerate the higher salinity and anaerobic conditions characteristic of Salton Sea sediments. Fundamental differences between the metabolic capacities and ecologies of Archaea and Bacteria are discussed to explain these patterns.  相似文献   

17.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

18.
Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments (Θ−1 = 3.50 ± 0.2) compared to the subsurface (2.78 ± 0.6), implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of ‘fresh’ (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.  相似文献   

19.
Li T  Wang P  Wang P X 《农业工程》2008,28(3):1166-1173
Microbial communities were obtained from the surface sediments of the Xisha Trough using the culture-independent technique. The characteristics of the 16S rDNA gene amplified from the sediments indicated that archaeal clones could be grouped into Euryarchaeota and Crenarchaeota, respectively. Two archaeal groups, Marine Crenarchaeotic GroupI and Terrestrial Miscellaneous Euryarchaeotal Group, were the most dominant archaeal 16S rDNA gene components in the sediments. The remaining components were related to the members of Marine Benthic Group B, Marine Benthic Group A, Marine Benthic Group D, Novel Euryarchaeotic Group and C3. The bacterial clones exhibited greater diversity than the archaeal clones with the 16S rDNA gene sequences from the members of Proteobacteria, Planctomycetes, Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, candidate division OP8, Bacterioidetes/Chlorobi and Verrucomicrobia. Most of these lineages represented uncultured microorganisms. The result suggests that a vast amount of microbial resource in the surface sediments of the South China Sea has not been known.  相似文献   

20.
Wang P  Li T  Hu A  Wei Y  Guo W  Jiao N  Zhang C 《Microbial ecology》2010,60(4):796-806
Using the archaeal 16S rRNA gene, we determined the community structures of archaea of subseafloor sediments (~9-11 m below seafloor) from two geographically distant cores (MD05-2896, south, water depth 1,657 m; MD05-2902, north, water depth 3,697 m) in the South China Sea. Euryarchaeota accounted for 61.4% of total archaeal clone libraries at MD05-2896 and 56.2% at MD05-2902. At both locations, the Euryarchaeota-related sequences were dominated by Marine Benthic Group D, Terrestrial Miscellaneous Eryarchaeotal Group, and South African GoldMine Euryarchaeotal Group; the Crenarchaeota-related sequences were dominated by Marine Benthic Group B, Marine Group I, pSL12, and C3. The community structure showed no significant difference with depth at each location, suggesting the lack of stratification of archaeal populations in the deep-sea marine sediments in the South China Sea. On the other hand, the community structure is significantly different between the two sites, which may be related to geographical difference in the South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号