首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
贝壳历来是生物工程和材料学研究的重要对象。贝壳中的贝壳基质蛋白质在贝壳的形成与发育过程中具有重要的调控作用。Whirlin类蛋白质(Whirlin-like protein,WLP)是一种从厚壳贻贝(Mytilus coruscus)中鉴定的新型贝壳基质蛋白质。序列分析结果显示,该蛋白质含有PDZ(postsynaptic density/Discs large/Zonula occludens)结构域,而该结构域对贝壳生物矿化的影响目前尚无报道。为深入了解WLP在贝壳形成中对碳酸钙晶体的影响,在序列分析基础上,采用密码子优化结合原核重组表达,获得其重组表达产物后,开展了重组WLP对碳酸钙晶体形貌及晶型的影响研究,结晶速度抑制以及碳酸钙晶体结合分析。分析结果表明,重组WLP能诱导文石型碳酸钙晶体的形貌和方解石型碳酸钙晶体的晶型发生改变;同时重组WLP对碳酸钙晶体具有结合作用,且能抑制碳酸钙晶体的结晶速度。上述结果表明,WLP对贝壳的形成及发育具有重要影响,并可能在贝壳肌棱柱层的形成中发挥了重要作用。  相似文献   

2.
对南海东沙海域DH-CL5PC岩心开展了碳酸钙含量、钙质生物壳体保存状况,有孔虫群落结构组成及氧碳同位素分析,结果发现该岩心MIS 3期碳酸钙含量极低、5个层位钙质生物壳体出现显著溶解现象。发生溶解层位各门类钙质生物化石丰度显著降低,底栖有孔虫与浮游有孔虫丰度比例(底栖/浮游)大于1,有孔虫壳体化学溶蚀特征明显。分析其原因认为,陆源物质的稀释作用及潜在的钙质生物溶解作用共同导致了该岩心的碳酸钙含量极低,而甲烷的有氧氧化过程所形成的偏酸性环境可能是导致钙质生物壳体发生显著溶解的主要原因。根据有孔虫群落结构和钙质生物化石保存状况的差异性,推测DH-CL5PC岩心所在区域MIS 3期以来至少经历过5次甲烷渗漏至海底附近低氧或富氧区域的过程,而各期次甲烷渗漏的强度可能有所差异。钙质生物壳体溶解现象结合其他指标一定程度上可以作为反演地质历史时期甲烷渗漏过程和强度的有效指标。  相似文献   

3.
贝壳是一种具有优异力学性能的生物硬组织,贝壳基质蛋白质对贝壳的形成具有重要意义。厚壳贻贝(Mytilus coruscus)贝壳中发现一种类似胶原蛋白质的新型贝壳基质蛋白质,命名为collagen-like protein 2(CLP-2)。然而,该蛋白质的结构与功能以及对贝壳形成的影响机制尚不清楚。为此,本研究对CLP 2开展了序列分析;进一步采取密码子优化结合原核重组表达策略,开展了CLP-2的重组表达;在此基础上分析了重组CLP-2对酸钙结晶的诱导、结晶速率抑制以及碳酸钙结合能力。对CLP-2的序列分析结果表明,该蛋白质序列中含有信号肽及两个Von Willebrand factor A(VWA)结构域。CLP-2在数据库中尚无高同源性蛋白质存在,表明这是一种较为新颖的贝壳基质蛋白。所获得的重组CLP-2对碳酸钙体外结晶表现出明显的诱导作用,扫描电镜以及傅里叶红外光谱结果表明,重组CLP-2可诱导碳酸钙晶体的形貌由立方体形转化为球形,并在高浓度下进一步转化为哑铃形;同时,重组CLP-2可促使碳酸钙晶体的晶型由方解石型向文石型转化;重组CLP-2在体外具有碳酸钙晶体结合作用;此外,重组CLP-2能显著抑制碳酸钙晶体的结晶速度(P<0.01),并具有浓度依赖性。上述结果表明,厚壳贻贝贝壳CLP-2蛋白质在贝壳,特别是文石型肌棱柱层的生物矿化过程中具有重要作用。上述研究为深入了解贻贝贝壳的形成机制,以及胶原类蛋白质对生物矿化过程的影响奠定了基础。  相似文献   

4.
生物矿化作用机理   总被引:16,自引:0,他引:16  
生物矿化作用类型可分为诱导和控制两种。生物从空间、构造和化学二方面进行控制、形成大小均匀、形状一致和排列规则的生物晶体。生物矿化位有胞内外泡囊、合胞体和有机基质、细胞层、生物矿物体后三者两两组合的空间。生物矿化作用经历核化、沉淀或生长和相变三个过程。生物利用有机基质,以结构大分子作为间隔底质,以酸性糖朊作为核化模板,来控制生物晶体的核化和牛长。由于过饱和度大、活化能大和抑制剂存在,生物矿物经常先沉淀含水非晶质相,再相变为含水结晶矿物相,最后相变为不含水的结晶矿物。  相似文献   

5.
鲍鱼壳是一种研究生物矿化机制的理想矿物材料,其贝壳蛋白在矿物形成过程中发挥着重要的调控作用。目前分离获得的鲍鱼贝壳基质蛋白组分多为水溶性蛋白,研究的重点多集中在序列分析,结构解析和功能鉴定及三者之间的关联方面。本文在此简要介绍鲍鱼壳蛋白组分近年的研究进展,希望能对进一步阐释贝壳矿化机理相关问题提供帮助。  相似文献   

6.
钙质红藻是指可以发生生物钙化作用在其细胞壁上沉淀碳酸钙的红藻。钙质红藻可以保存为化石,是红藻古生物研究中的重要类群,具有重要的生态意义,但以往的研究对钙质红藻类群的系统分类及地史分布缺乏清晰认识。本文详细综述了钙质红藻化石的系统分类,归属于红藻门(Rhodophyta)红藻纲(Rhodophyceae)的4个目7个科,分别为珊瑚藻亚纲(Corallinophycidae)珊瑚藻目(Corallinales)的珊瑚藻科(Corallinaceae)、石叶藻科(Lithophyllaceae)、宽珊藻科(Mastophoraceae)和管孔藻科(Solenoporaceae),混石藻目(Hapalidiales)的混石藻科(Hapalidiaceae),孢石藻目(Sporolithales)的孢石藻科(Sporolithaceae)以及真红藻亚纲(Florideophycidae)耳壳藻目(Peyssonneliales)的耳壳藻科(Peyssonneliaceae)。最早的钙质红藻为管孔藻科,出现于中奥陶世,于中新世灭绝。珊瑚藻科最早出现于晚志留世并于白垩纪辐射演化至今,其他科均于白垩纪...  相似文献   

7.
贝类贝壳在生物材料学及仿生学研究中占据着重要地位。贝壳基质蛋白质是贝壳中的主要有机质成分,对贝壳的形成以及贝壳的力学性能至关重要。翡翠贻贝(Perna viridis)贝壳主要由肌棱柱层和珍珠质层两种微观结构组成,其结构层次较简单,是研究贝壳基质蛋白质及其与贝壳形成关系的极好材料。为深入研究翡翠贻贝贝壳基质蛋白质的分子组成以及分布特点,首先采用扫描电子显微镜,观察翡翠贻贝贝壳内表面珍珠质层和肌棱柱层的微观结构;采用刮取法获得贝壳内表面珍珠质层和肌棱柱层的粉末;对不同层次的贝壳粉末,利用酸溶法去除碳酸钙成分,所获得的有机质组分通过离心将其分为酸可溶性组分和酸不溶性组分。采用Illumina深度测序技术对翡翠贻贝外套膜组织进行大规模测序和序列组装,在此基础上,采用LC-MS/MS质谱技术结合外套膜转录组数据库搜索,对翡翠贻贝肌棱柱层和珍珠质层贝壳基质蛋白质开展组学分析。扫描电镜观察结果表明,翡翠贻贝贝壳有两种不同形貌结构的层次,其中珍珠质层为片状堆叠结构,而肌棱柱层为柱状结构。翡翠贻贝外套膜转录组测序共计获得 69 859 条Unigene。蛋白质组学鉴定结果表明,翡翠贻贝贝壳中总计鉴定到蛋白质54种,其中38种为肌棱柱层所特有蛋白质,3种珍珠质层特有蛋白质,另有13种在珍珠质层和肌棱柱层均被鉴定到。肌棱柱层特有蛋白质的分子多样性明显强于珍珠质层。上述研究为进一步探讨贝壳不同微观层次的形成机制,以及贝壳基质蛋白质对贝壳不同结构层次的调控作用机制奠定了基础。  相似文献   

8.
钙质海锦之古生态   总被引:4,自引:0,他引:4  
古生代生物礁中钙质海绵(纤维海绵、房室海绵、硬海绵)的生态位在中三叠世以后被生态竞争能力更强的六射珊瑚所占据。在古生代和中三叠世的钙质海绵礁上,0-10m深度内钙质海绵很发育。由于与钙藻共生,典型的造礁钙质海绵生活在透光带以内,并且在其上部更丰富。钙质海绵礁也会生长到破浪带内并受风浪的破坏而形成倒骨岩和骨屑岩。对古生代的钙质海绵礁而言,倒骨岩和骨屑岩形成于0-3m水深范围内,亮晶骨架岩形成于3-1  相似文献   

9.
珍珠是由珍珠贝外套膜的上皮细胞受到外源刺激物刺激形成珍珠囊(pearl—sac),并由珍珠囊产生的钙质分泌物.其分泌物逐渐包围刺激原.使之体积急剧增长而形成的,珍珠质(nacre)是由大于95%的碳酸钙晶体与约5%的角壳蛋白组成的生物矿化产物。因此珍珠贝的外套膜在珍珠形成中起着重要的作用。珍珠贝外套膜的体外培养已开展了一些初步的研究工作。  相似文献   

10.
本文用~3H-DHT/~(131)Ⅰ-受体双标记复合物,研究了雄激素作用过程中,其与大鼠前列腺细胞染色质的相互作用。前列腺细胞染色质经盐分部成4个组分,其中0.35mol/L低盐可溶性和2mol/L高盐不溶性染色质组分是与激素-受体复合物的主要结合部分,分别占48%和30%。按蛋白质的量计算,高盐不溶性染色质的结合程度是前者的17.5倍。该两种染色质组分的可能关系以及在雄激素作用中的机制值得深入探讨。与染色质各组分结合的雄激素-受体的~3H/~(131)Ⅰ比例恒定,提示DHT-受体复合物参与作用的完整性。实验结果提示,染色质蛋白在雄激素作用过程中,涉及到与DNA形成接受位点的可能。  相似文献   

11.
Carbonic anhydrase (CA) is a key enzyme in the chemical reaction of living organisms and has been found to be associated with calcification in a number of invertebrates including calcareous sponges, but until now no direct evidence has been advanced to show CA activity in alcyonarian corals. However, it is essential to understand the role of CA in the process of biocalcification in alcyonarian. Here we describe the novel activity of CA and its relationship to the formation of calcified hard tissues in alcyonarian coral, Lobophytum crassum. We find that two CA proteins, which were partially purified by electro-elution treatment, can control the morphology of CaCO3 crystals and one of them is potentially involved in the process of biocalcification. Previously, we isolated CA from the total extract of alcyonarian, and further, we report here a single protein, which has both calcium-binding and CA activities and is responsible for CaCO3 nucleation and crystal growth. This matrix protein inhibited the precipitation of CaCO3 from a saturated solution containing CaCl2 and NaHCO3, indicating that it can act as a negative regulator for calcification in the sclerites of alcyonarians. The effect of an inhibitor on the enzyme activity was also examined. These findings strongly support the idea that carbonic anhydrase domain in alcyonarian is involved in the calcification process. Our observations strongly suggest that the matrix protein in alcyonarian coral is not only a structural protein but also a catalyst.  相似文献   

12.
Rahman MA  Isa Y  Uehara T 《Proteomics》2005,5(4):885-893
Calcified organic substances in the skeleton contain a protein-polysaccharide complex taking a key role in the regulation of bio-calcification. However, information concerning the matrix proteins in alcyonarian and their effect on calcification process is still unknown. For this reason, we have studied the organic matrix of endoskeletal spicules from the alcyonarian coral, Synularia polydactyla, to analyze the proteins with their sequences and investigate the functional properties by a molecular approach. The separated spicules from the colony were identified by scanning electron microscope (SEM). The soluble organic matrix comprised 0.04% of spicule weight. By recording decline of pH in the experimental design, the inhibitory effect of the matrix on CaCO3 precipitation was revealed. Prior to electrophoresis, our analysis of proteins extracted from the soluble organic matrix of the spicules revealed an abundance of proteins in molecular weight. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the preparations showed seven bands of proteins with an apparent molecular mass of 109, 83, 70, 63, 41, 30 and 22 kDa. The proteins were electrophoresed on Tricine-SDS-PAGE after electro-elution treatment, and then transferred to polyvinylidene difluoride (PVDF) membranes and their N-termini were sequenced. Two bands of proteins of about 70 and 63 kDa successfully underwent N-terminal amino acid sequencing. For the detection of calcium binding proteins, a Ca2+ overlay analysis was conducted on the extract by 45Ca autoradiography. The 109 and 63 kDa calcium binding proteins were found to be radioactive. Periodic acid schiff staining indicated that 83 and 63 kDa proteins were glycosylated. An assay for carbonic anhydrase, which is thought to play an important role in the process of calcification revealed low level of the activity. These findings suggest that the endoskeletal spicules of alcyonarian corals have protein-rich organic matrices, which might be related to the calcification process.  相似文献   

13.
The organic matrix of spicules of the alcyonarian coral, Lobophytum crassum, was studied to investigate its molecular characteristics and functional properties. The shape of the spicules was identified using scanning electron microscopy. The soluble organic matrix comprised 0.03% of the spicule weight. The SDS-PAGE analysis of the preparation showed four protein bands with apparent molecular weights of 37, 48, 67 and 102 kDa. The 67- and 102-kDa proteins appeared to be calcium binding proteins, detected as radioactive bands by 45Ca autoradiography. The 67-kDa protein appears to be glycosylated. The N-terminal amino acid sequence of the 67 kDa was determined; 7 of 20 residues were acidic. A database search for homologous proteins did not give a clear indication of the function of the 67-kDa protein. The isolated organic matrix possesses carbonic anhydrase activity which functions in calcium carbonate crystal formation, indicating that organic matrix is not only structural protein but also a catalyst. An interpretation of these results is that the spicule of alcyonarian corals has a proteinaceous organic matrix related to the calcification process.  相似文献   

14.
ABSTRACT

Biomineralization by living organisms are common phenomena observed everywhere. Molluskan shells are representative biominerals that have fine microstructures with controlled morphology, polymorph, and orientation of CaCO3 crystals. A few organic molecules involved in the biominerals play important roles in the formation of such microstructures. Analyses of structure–function relationships for matrix proteins in biominerals revealed that almost all matrix proteins have an acidic region for the binding of calcium ion in CaCO3 crystals and interaction domains for other organic molecules. On the other hand, biomineralization of metal nanoparticles by microorganisms were also investigated. Gold nanoparticles and quantum dots containing cadmium were successfully synthesized by bacteria or a fungus. The analyses of components revealed that glycolipids, oligosaccharides, and lactic acids have key roles to synthesize the gold nanoparticle in Lactobacillus casei as reductants and dispersants. These researches about biomineralization will give new insights for material and environmental sciences in the human society.  相似文献   

15.
16.
Summary The effect of carbonic anhydrase (CA), urea and urease on the CaCO3 deposition in the shell-repair membrane of the snail, Helix pomatia, was studied by injection of CA separately or in combination with urease. This treatment resulted in increased deposits of CaCO3 and apparent crystal formation within the shell-repair membranes compared with those of the controls. The reactions to CA combined with urea were not uniform. Formation of organic crystalline structures and dendritic spherulites was observed in some of these membranes, whereas the deposition of CaCO3 crystals was suppressed. Administration of urea alone inhibited the formation of large CaCO3 crystals, whereas urease stimulated this process. The reaction of young snails was greater compared to adults. The membranes of young snails contained tighly packed, small CaCO3 crystals and organic crystalline structures, which indicated increase of the calcifying centra and their successive mineralization. The results support the assumption that carbonic anhydrase and urease enhance the rate of calcium carbonate deposition and crystal formation in Helix pomatia.  相似文献   

17.
Shell nacre is laid upon an organic cell-free matrix, part of which, paradoxically, is water soluble and displays biological activities. Proteins in the native shell also constitute an insoluble network and offer a model for studying supramolecular organization as a means of self-ordering. Consequently, difficulties are encountered in extraction and purification strategies for protein characterization. In this work, water-soluble proteins and the insoluble conhiolin residue of the nacre of Pinctada margaritifera matrix were analyzed via a proteomics approach. Two sequences homologous to nacre matrix proteins of other Pinctada species were identified in the water-soluble extract. One of them is known as a fundamental component of the insoluble organic matrix of nacre. In the conchiolin, the insoluble residue, four homologs of Pinctada nacre matrix proteins were found. Two of them were the same as the molecules characterized in the water-soluble extract. Results established that soluble and insoluble proteins of the nacre organic matrix share constitutive material. Surprisingly, a peptide in the conchiolin residue was found homologous to a prismatic matrix protein of Pinctada fucata, suggesting that prismatic and nacre matrices may share common proteins. The insoluble properties of shell matrix proteins appear to arise from structural organization via multimerization. The oxidative activity, found in the water-soluble fraction of the nacre matrix, is proposed as a leading process in the transformation of transient soluble proteins into the insoluble network of conchiolin during nacre growth.  相似文献   

18.
The ability to construct mineralized shells, spicules, spines and skeletons is thought to be a key factor that fuelled the expansion of multicellular animal life during the early Cambrian. The genes and molecular mechanisms that control the process of biomineralization in disparate phyla are gradually being revealed, and it is broadly recognized that an insoluble matrix of proteins, carbohydrates and other organic molecules are required for the initiation, regulation and inhibition of crystal growth. Here, we show that Astrosclera willeyana, a living representative of the now largely extinct stromatoporid sponges (a polyphyletic grade of poriferan bauplan), has apparently bypassed the requirement to evolve many of these mineral‐regulating matrix proteins by using the degraded remains of bacteria to seed CaCO3 crystal growth. Because stromatoporid sponges formed extensive reefs during the Paelozoic and Mesozoic eras (fulfilling the role that stony corals play in modern coral reefs), and fossil evidence suggests that the same process of bacterial skeleton formation occurred in these stromatoporid ancestors, we infer that some ancient reef ecosystems might have been founded on this microbial–metazoan relationship.  相似文献   

19.

Background  

The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora.  相似文献   

20.
Information concerning the role of the organic matrix (OM) in statolith mineralization may contribute to resolving problems currently facing the use of increments in squid statoliths to estimate the age of individuals. A preliminary study aimed at purifying and characterizing the OM proteins from statoliths of the loliginid squid Lolliguncula brevis is described. Proteins extracted from the statoliths were separated into two fractions, insoluble and soluble in aqueous solutions. Gel electrophoresis indicated that the insoluble fraction is composed of at least eight major proteins, ranging in size from 25 to over 200 kDa. The five largest insoluble proteins were glycosylated, as shown by immunoassay. In contrast, the soluble fraction is composed of a single dominant protein of about 100 kDa, and two other major proteins of higher molecular weight. All three soluble proteins were glycosylated. Molecular weight and partial sequence data of peptides from five of the insoluble and one of the soluble proteins were used to search databases for possible homologs. No matches were found, suggesting that these proteins may belong to a class of hitherto undescribed OM compounds. Different proteins are involved in biomineralization processes in different organisms. We propose that the insoluble matrix proteins are responsible for regulating the appearance of increments in squid statoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号