首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a–C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions.  相似文献   

2.
Phage display technologies have been increasingly utilized for the generation of therapeutic, imaging and purification reagents for a number of biological targets. Using a variety of different approaches, we have developed antibodies with high specificity and affinity for various targets ranging from small peptides to large proteins, soluble or membrane-associated as well as to activated forms of enzymes. We have applied this approach to G-protein coupled receptors (GPCRs), often considered difficult targets for antibody therapeutics and targeting. Here we demonstrate the use of this technology for the identification of human antibodies targeting C5aR, the chemoattractant GPCR receptor for anaphylatoxin C5a. The N-terminal region (residues 1-31) of C5aR, one of the ligand binding sites, was synthesized, biotinylated and used as the target for selection. Three rounds of selection with our proprietary human Fab phage display library were performed. Screening of 768 isolates by phage ELISA identified 374 positive clones. Based on sequence alignment analysis, the positive clones were divided into 22 groups. Representative Fab clones from each group were reformatted into IgGs and tested for binding to C5aR-expressing cells, the differentiated U-937 cells. Flow cytometric analysis demonstrated that nine out of 16 reformatted IgGs bound to cells. Competition with a C5aR monoclonal antibody S5/1 which recognizes the same N-terminal region showed that S5/1 blocked the binding of positive cell binders to the peptide used for selections, indicating that the identified cell binding IgGs were specific to C5aR. These antibody binders represent viable candidates as therapeutic or imaging agents, illustrating that phage display technology provides a rapid means for developing antibodies to a difficult class of targets such as GPCRs.  相似文献   

3.
Activation of the complement cascade plays an esssential role in the early stages of inflammation. C5a and its receptor are particularly active in anaphylaxis. To determine the pathological roles played by C5a and C5a receptor (C5aR) in rats, we cloned C5aR cDNA and analyzed distribution of its mRNA in various organs including lung from an LPS-stimulated rat. Furthermore, we generated a polyclonal antiserum which specifically recognizes rat C5aR, as confirmed by its specific interaction with cells transfected with rat C5aR cDNA.  相似文献   

4.
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages.BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2–C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser473) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes.C5L2–C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2–C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.  相似文献   

5.
6.
Two chemoattractant receptors, C5aR (the complement fragment C5a receptor) and FPR (the N-formyl peptide receptor), are involved in neutrophil activation at sites of inflammation. In this study, we found major differences in the intracellular trafficking of the receptors in transfected Chinese hamster ovary (CHO) cells. Western blot analysis showed that FPR was stable during a 3 h stimulation with ligand, but C5aR was reduced in quantity by 50%. Not all C5aR was targeted directly for degradation however; a small, but visible fraction of the receptor became re-phosphorylated upon subsequent addition of ligand, suggesting that some of the receptor had cycled to the cell surface. Light membrane fractions isolated from activated cells showed C5aR distribution at the bottom of a glycerol gradient, colocalizing with the main distribution of the late endosomal/lysosomal marker LAMP2, whereas FPR was found at the bottom of the gradient as well as in the middle of the gradient, where it cofractionated with the early/sorting endosomal marker Rab5. Using fluorescence microscopy, we observed ligand-dependent redistribution of C5aR-EGFP from the plasma membrane to LAMP2-positive compartments, whereas FPR-EGFP showed significant colocalization with the early/sorting endosomes. Analysis of endogenous C5aR and FPR in neutrophils revealed a pattern similar to the CHO transfectants: C5aR underwent degradation after prolonged ligand stimulation, while FPR did not. Finally, we confirmed the down-regulation of C5aR in a functional assay by showing reduced chemotaxis toward C5a in both CHO transfectants and neutrophils after preincubation with C5a. A similar decrease in FPR-mediated chemotaxis was not observed.  相似文献   

7.
Complement component C5a is one of the most potent inflammatory chemoattractants and has been implicated in the pathogenesis of numerous inflammatory diseases. C5a binds two receptors, C5aR and C5L2. Most of the C5a functional effects occur through C5aR, and the pharmaceutical industry has focused on this receptor for the development of new anti-inflammatory therapies. We used a novel approach to generate and test therapeutics that target C5aR. We created human C5aR knock-in mice, and used neutrophils from these to immunize wild-type mice. This yielded high-affinity blocking mAbs to human C5aR. We tested these anti-human C5aR mAbs in mouse models of inflammation, using the human C5aR knock-in mice. These antibodies completely prevented disease onset and were also able to reverse established disease in the K/B x N arthritis model. The physiological role of the other C5a receptor, C5L2 is still unclear, and our studies with blocking mAbs to human C5L2 have failed to demonstrate a clear functional role in signaling to C5a. The development of effective mAbs to human C5aR is an alternative approach to drug development, for this highly attractive target.  相似文献   

8.
The phenomena of allosterism continues to advance the field of drug discovery, by illuminating gainful insights for many key processes, related to the structure–function relationships in proteins and enzymes, including the transmembrane G-protein coupled receptors (GPCRs), both in normal as well as in the disease states. However, allosterism is completely unexplored in the native protein ligands, especially when a small covalent change significantly modulates the pharmacology of the protein ligands toward the signaling axes of the GPCRs. One such example is the human C5a (hC5a), the potent cationic anaphylatoxin that engages C5aR and C5L2 to elicit numerous immunological and non-immunological responses in humans. From the recently available structure–function data, it is clear that unlike the mouse C5a (mC5a), the hC5a displays conformational heterogeneity. However, the molecular basis of such conformational heterogeneity, otherwise allosterism in hC5a and its precise contribution toward the overall C5aR signaling is not known. This study attempts to decipher the functional role of allosterism in hC5a, by exploring the inherent conformational dynamics in mC5a, hC5a and in its point mutants, including the proteolytic mutant des-Arg74-hC5a. Prima facie, the comparative molecular dynamics study, over total 500 ns, identifies Arg74-Tyr23 and Arg37-Phe51 “cation-π” pairs as the molecular “allosteric switches” on hC5a that potentially functions as a damper of C5aR signaling.  相似文献   

9.
The complement anaphylatoxin C5a is a proinflammatory component of host defense that functions through two identified receptors, C5a receptor (C5aR) and C5L2. C5aR is a classical G protein-coupled receptor, whereas C5L2 is structurally homologous but deficient in G protein coupling. In human neutrophils, we show C5L2 is predominantly intracellular, whereas C5aR is expressed on the plasma membrane. Confocal analysis shows internalized C5aR following ligand binding is co-localized with both C5L2 and β-arrestin. Antibody blockade of C5L2 results in a dramatic increase in C5a-mediated chemotaxis and ERK1/2 phosphorylation but does not alter C5a-mediated calcium mobilization, supporting its role in modulation of the β-arrestin pathway. Association of C5L2 with β-arrestin is confirmed by cellular co-immunoprecipitation assays. C5L2 blockade also has no effect on ligand uptake or C5aR endocytosis in human polymorphonuclear leukocytes, distinguishing its role from that of a rapid recycling or scavenging receptor in this cell type. This is thus the first example of a naturally occurring seven-transmembrane segment receptor that is both obligately uncoupled from G proteins and a negative modulator of signal transduction through the β-arrestin pathway. Physiologically, these properties provide the possibility for additional fine-tuning of host defense.  相似文献   

10.
The anaphylatoxin, complement 5a (C5a), plays a key role in mediating various inflammatory reactions following complement activation. Several investigators have reported that C5a receptor (C5aR) is expressed in non-myeloid cells under certain conditions or in different cell lines. In our study, the abundance of C5aR-positive myeloid cells in rats depended on the organs examined. C5aR was usually expressed at the site of exposure to pathogens, such as in salivary gland or lung, and was up-regulated in liver in the inflammatory state induced by lipopolysaccharide (LPS) administration. Furthermore, the increased expression of C5aR antigen was not accompanied by an increase in C5aR mRNA in Kupffer cells following LPS challenge.  相似文献   

11.
The complement system plays an important role in inflammation and immunity. In this system, a potent inflammatory ligand is C5a, which initiates its effects by activating its core receptor C5aR1. Thus, compounds that interfere with the C5a–C5aR1 interaction could alleviate some inflammatory conditions. Consequently, several ligands that bind to either C5a or C5aR1 have previously been isolated and evaluated. In the present study, two RNA aptamers, aptamer 1 and aptamer 9, that specifically bind to hC5aR1 with much higher affinity than antibodies were isolated. These two aptamers were tested for their ability to interfere with the cognate ligand of hC5aR1, C5a, using a chemotaxis assay. Both aptamer 1 and 9 interfered with the C5a interaction, suggesting that the aptamers recognized the extracellular domain of hC5aR1 responsible for hC5a ligand binding. Considering the higher affinity of aptamers to the hC5aR1 and their interference with hC5a ligand binding, further study is warranted to explore not only their applications in the diagnosis of inflammatory diseases but also their usefulness in modulating hC5a and hC5aR1 interactions.  相似文献   

12.
The complement system activation can mediate myocardial ischemia and reperfusion (I/R). Inhibition of C5a activity reveals attenuation of I/R-induced myocardial infarct size. However, the contribution of C5a receptor (C5aR) to I/R injury remains to be unknown. Here, we reported that both mRNA and protein for the C5aR were constitutively expressed on cardiomyocytes and upregulated as a function of time after I/R-induced myocardial cell injury in mice. Blockade of C5aR markedly decreased microvascular permeability in ischemic myocardial area and leukocyte adherence to coronary artery endothelium. Importantly, the blocking of C5aR with an anti-C5aR antibody was associated with inhibition in activation of protein kinase C delta (PKC-delta) and induction of PKC-mediated mitogen-activated protein kinase phosphatases-1 (MKP-1) leading to the increased activity of p42/p44 mitogen-activated protein (MAP) kinase cascade. These data provide evidence that C5aR-mediated myocardial cell injury is an important pathogenic factor, and that C5aR blockade may be useful therapeutic targets for the prevention of myocardial I/R injury.  相似文献   

13.
The study presents structural models for the complex of the chemotaxis inhibitory protein of Staphylococcus aureus, CHIPS, and receptor for anaphylotoxin C5a, C5aR. The models are based on the recently found NMR structure of the complex between CHIPS fragment 31-121 and C5aR fragment 7-28, as well as on previous results of molecular modeling of C5aR. Simple and straightforward modeling procedure selected low-energy conformations of the C5aR fragment 8-41 that simultaneously fit the NMR structure of the C5aR 10-18 fragment and properly orient the NMR structure of CHIPS31-121 relative to C5aR. Extensive repacking of the side chains of CHIPS31-121 and C5aR8-41 predicted specific residue-residue interactions on the interface between CHIPS and C5aR. Many of these interactions were rationalized with experimental data obtained by site-directed mutagenesis of CHIPS and C5aR. The models correctly showed that CHIPS binds only to the first binding site of C5a to C5aR not competing with C5a fragment 59-74, which binds the second binding site of C5aR. The models also predict that two elements of CHIPS, fragments 48-58 and 97-111, may be used as structural templates for potential inhibitors of C5a.  相似文献   

14.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

15.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

16.
Intestinal epithelial cells (IECs) exhibit numerous adaptations to maintain barrier function as well as play sentinel roles by expressing receptors for microbial products and antimicrobial peptides. The complement system is another important innate sensing and defense mechanism of the host against bacteria and increasing evidence shows that complement plays a role in colitis. The split component C5a is a potent proinflammatory molecule, and the C5a receptor (C5aR) CD88 has been reported on multiple cell types. Here, we examined the question of whether human colonic cell lines can detect activated complement via C5aR and what signaling pathway is critical in the subsequent responses. T84, HT29, and Caco2 cell lines all possessed mRNA and protein for C5aR and the decoy receptor C5L2. Polarized cells expressed the proteins on the apical cell membrane. C5a binding to the C5aR on human IECs activates the ERK pathway, which proved critical for a subsequent upregulation of IL-8 mRNA, increased permeability of monolayers, and enhanced proliferation of the cells. The fact that human IECs are capable of detecting complement activation in the lumen via this anaphylatoxin receptor highlights the potential for IECs to detect pathogens indirectly through complement activation and be primed to amplify the host response through heightened inflammatory mediator expression to further recruit immune cells.  相似文献   

17.
C5a receptor (C5aR) is one of the major chemoattractant receptors of the druggable proteome that binds C5a, the proinflammatory polypeptide of complement cascade, triggering inflammation and SEPSIS. Here, we report the model structures of C5aR in both inactive and peptide agonist (YSFKPMPLaR; a=D-Ala) bound meta-active state. Assembled in CYANA and evolved over molecular dynamics (MD) in POPC bilayer, the inactive C5aR demonstrates a topologically unique compact heptahelical bundle topology harboring a β-hairpin in extracellular loop 2 (ECL2), derived from the atomistic folding simulations. The peptide agonist bound meta-active C5aR deciphers the “site2” at an atomistic resolution in the extracellular surface (ECS), in contrast to the previously hypothesized inter-helical crevice. With estimated Ki≈2.75 μM, the meta-active C5aR excellently rationalizes the IC50 (0.1–13 μM) and EC50 (0.01–6 μM) values, displayed by the peptide agonist in several signaling studies. Moreover, with Ki≈5.3×105 μM, the “site2” also illustrates selectivity, by discriminating the stereochemical mutant peptide (YSFkPMPLaR; k=D-Lys), known to be inert toward C5aR, up to 1 mM concentration. Topologically juxtaposed between the structures of rhodopsin and CXCR1, the C5aR models also display excellent structural correlations with the other G-protein coupled receptors (GPCRs). The models elaborated in the current study unravel many important structural insights previously not known for regulating the agonist binding and activation mechanism of C5aR.  相似文献   

18.
19.
The N terminus of G protein-coupled receptors has been implicated in binding to peptide hormones. We have used random saturation mutagenesis to identify essential residues in the N terminus of the human complement factor 5a receptor (C5aR). In a library of N-terminal mutant C5aR molecules screened for activation by C5a, residues 24-30 of the C5aR showed a marked propensity to mutate to cysteine, most likely indicating that sulfhydryl groups at these positions are appropriately situated to form disulfide interactions with the unpaired Cys(27) of human C5a. This presumptive spatial constraint allowed the ligand to be computationally docked to the receptor to form a model of the C5a/C5aR interaction. When the N-terminal mutant C5aR library was rescreened with C5a C27R, a ligand incapable of disulfide interactions, no individual position in the N terminus was essential for receptor signaling. However, the region 19-29 was relatively highly conserved in the functional mutants, further demonstrating that this region of the C5aR makes a productive physiologic interaction with the C5a ligand.  相似文献   

20.
Chimeric receptors of the human C3a receptor and C5a receptor (CD88)   总被引:2,自引:0,他引:2  
Chimeras were generated between the human anaphylatoxin C3a and C5a receptors (C3aR and C5aR, respectively) to define the structural requirements for ligand binding and discrimination. Chimeric receptors were generated by systematically exchanging between the two receptors four receptor modules (the N terminus, transmembrane regions 1 to 4, the second extracellular loop, and transmembrane region 5 to the C terminus). The mutants were transiently expressed in HEK-293 cells (with or without Galpha-16) and analyzed for cell surface expression, binding of C3a and C5a, and functional responsiveness (calcium mobilization) toward C3a, C5a, and a C3a as well as a C5a analogue peptide. The data indicate that in both anaphylatoxin receptors the transmembrane regions and the second extracellular loop act as a functional unit that is disrupted by any reciprocal exchange. N-terminal substitution confirmed the two-binding site model for the human C5aR, in which the receptor N terminus is required for high affinity binding of the native ligand but not a C5a analogue peptide. In contrast, the human C3a receptor did not require the original N terminus for high affinity binding of and activation by C3a, a result that was confirmed by N-terminal deletion mutants. This indicates a completely different binding mode of the anaphylatoxins to their corresponding receptors. The C5a analogue peptide, but not C5a, was an agonist of the C3aR. Replacement of the C3aR N terminus by the C5aR sequence, however, lead to the generation of a true hybrid C3a/C5a receptor, which bound and functionally responded to both ligands, C3a and C5a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号