首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The association in vitro of rat brain hexokinase to mitochondria from rat liver or yeast (wildtype, porinless, or expressing recombinant human porin) was studied in an effort to identifyminimal requirements for each component. A short hydrophobic N-terminal peptide ofhexokinase, readily cleavable by proteases, is absolutely required for its binding to all mitochondria.Mammalian porins are significantly cleaved at two positions in putative cytoplasmic loopsaround residues 110 and 200, as determined by proteolytic-fragment identification usingantibodies. Recombinant human porin in yeast mitochondria is more sensitive to proteolysisthan wild-type porin in rat liver mitochondria. Recombinant yeast mitochondria, harboringseveral natural or engineered porins from various sources, bind hexokinase to variable extentwith marked preference for the mammalian porin1 isoform. Genetic alteration of this isoformat the C-, but not the N-terminal, results in a significant reduction of hexokinase bindingability. Macromolecular crowding (dextran) promotes a stronger association of the enzyme toall recombinant mitochondria, as well as to proteolytically digested organelles. Consequently,brain hexokinase association with heterologous mitochondria (yeast) in these conditions occursto an extent comparable to that with homologous (rat) mitochondria. The study, also pertinentto the topology and organization of porin in the membrane, represents a necessary first stepin the functional investigation of the physiological role of mammalian hexokinase binding tomitochondria in reconstituted heterologous recombinant systems, as models to cellularmetabolism.  相似文献   

2.
Binding of the Type I isozyme of mammalian hexokinase to mitochondria is mediated by the porin present in the outer mitochondrial membrane. Type I hexokinase from rat brain is avidly bound by rat liver mitochondria while, under the same conditions, there is no significant binding to mitochondria from S. cerevisiae. Previously published work demonstrates the lack of significant interaction of yeast hexokinase with mitochondria from either liver or yeast. Thus, structural features required for the interaction of porin and hexokinase must have emerged during evolution of the mammalian forms of these proteins. If these structural features serve no functional role other than facilitating this interaction of hexokinase with mitochondria, it seems likely that they evolved in synchrony since operation of selective pressures on the hexokinase–mitochondrial interaction would require the simultaneous presence of hexokinase and porin capable of at least minimal interaction, and be responsive to changes in either partner that affected this interaction. Recent studies have indicated that a second type of binding site, which may or may not involve porin, is present on mammalian mitochondria. There are also reports of hexokinase binding to mitochondria in plant tissues, but the nature of the binding site remains undefined.  相似文献   

3.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

4.
Heterologous binding of rat brain hexokinase to wild type, porinless, and recombinant yeast mitochondria expressing human porin was assessed, partially characterized, and compared to that in the homologous system (rat liver mitochondria). With porin-containing yeast mitochondria it is shown that (i) a significant, saturatable association occurs; (ii) its extent and apparent affinity, correlated with the origin of porin, are enhanced in the presence of dextran; (iii) the binding requires Mg ions and apparently follows a complex cooperative mechanism. This heterologous association does not seem to differ fundamentally from that in the homologous system and represents a good basis for molecular studies in yeast. With porinless yeast mitochondria, binding occurs at much lower affinity, but to many more sites per mitochondrion. The results indicating a major but not exclusive role for porin in the binding are discussed in terms of (i) the mode and mechanism of binding, and (ii) the suitability of the rat hexokinase–yeast mitochondria couple for the study of heterogeneous catalysis in reconstituted cellular model systems.  相似文献   

5.
Isolated and well-characterized rat brain nonsynaptic mitochondria were subfractionated by digitonin. Antibodies to a uniquely outer membrane protein, porin, have allowed us to use this protein for the first time as an outer membrane marker in brain. Hexokinase, which binds to porin, was also measured. Based upon the sequential release of these and other marker enzymes with increasing concentrations of digitonin, three outer membrane domains have been identified. Two populations of porin were found by this treatment. The most plausible interpretation of our results is that the two porin populations exist in different membrane environments with regard to cholesterol. One of these populations binds most of the hexokinase and appears to be associated with the inner membrane. It is proposed that the porin-hexokinase complex in brain mitochondria is located in a cholesterol-free membrane domain together with inner membrane components. This domain has the features of contact points which have been visualized by electron microscopy.  相似文献   

6.
The present investigation has attempted to define in rat liver mitochondria the distribution of outer membrane proteins in relation to the inner membrane by fractionation with digitonin and phospholipase A2. Porin, the channel-forming protein in the outer membrane, was measured quantitatively by immunological methods. Neither monoamine oxidase nor porin could be released by phospholipase A2 treatment, but both were released by digitonin, at the same detergent concentration. Thus, the release of monoamine oxidase and porin requires the disruption of the cholesterol but not the phospholipid domains of the membrane and the two polypeptides exist in the same, or similar, membrane environment with regard to cholesterol. Changes in the energy state, or binding of brain hexokinase to rat liver mitochondria prior to fractionation with digitonin, did not alter the release patterns of porin and monoamine oxidase. The uptake of Ca2+, however, resulted in the concomitant release of the outer membrane markers together with the matrix marker, malate dehydrogenase. The present findings with liver differ from those obtained recently with brain mitochondria (L. Dorbani et al. (1987) Arch. Biochem. Biophys. 252, 188-196) in which two populations of porin were located in two different cholesterol domains. The significance of these differences in the location of porin in liver and brain mitochondria is discussed.  相似文献   

7.
8.
B D Nelson  F Kabir 《Biochimie》1986,68(3):407-415
The outer mitochondrial membrane contains a pore structure which is composed of a 30,000 Da protein, porin. The pore has an internal diameter of 2 nm and exhibits a molecular-sieving exclusion limit between 3000 and 6000 Da. These pores, therefore, provide the exit/entrance port for metabolites moving between mitochondria and the cytosol. Hexokinase binds to porin on the outer surface of mitochondria. The location of hexokinase has evoked a number of theories in which bound hexokinase is given a central role in regulating glycolysis, and, perhaps, the metabolic communication between oxidative and glycolytic metabolism. This is of particular importance in rapidly growing tumor cells in which the aerobic production of lactate and hexokinase activity are highly induced. In the present paper, we summarize the suggested roles of the outer membrane and bound hexokinase in regulation glycolysis of tumor cells. Experiments attempting to elucidate the role of hexokinase binding in the regulation of tumor cell metabolism are presented.  相似文献   

9.
We have previously provided evidence that diffusion of metabolites across the porin pores of mitochondrial outer membrane is hindered. A functional consequence of this diffusion limitation is the dynamic compartmentation of ADP in the intermembrane space. These earlier studies were done on isolated mitochondria suspended in isotonic media without macromolecules, in which intermembrane space of mitochondria is enlarged. The present study was undertaken to assess the diffusion limitation of outer membrane in the presence of 10% (w/v) dextran M20, in order to mimic the action of cytosolic macromolecules on mitochondria. Under these conditions, mitochondria have a more native, condensed configuration.Flux-dependent concentration gradients of ADP were estimated by measuring the ADP diffusion fluxes across the porin pores of isolated rat heart mitochondria incubated together with pyruvate kinase (PK), both of which compete for ADP regenerated by mitochondrial creatine kinase (mtCK) within the intermembrane space or by yeast hexokinase (HK) extramitochondrially. From diffusion fluxes and bulk phase concentrations of ADP, its concentrations in the intermembrane space were calculated using Fick's law of diffusion. Flux-dependent gradients up to 23 microM ADP (for a diffusion rate of J(Dif)=1.9 micromol ADP/min/mg mitochondrial protein) were observed. These gradients are about twice those estimated in the absence of dextran and in the same order of magnitude as the cytosolic ADP concentration (30 microM), but they are negligibly low for cytosolic ATP (5 mM). Therefore, it is concluded that the dynamic ADP compartmentation is of biological importance for intact heart cells.If mtCK generates ADP within the intermembrane space, the local ADP concentration can be clearly higher than in the cytosol resulting in higher extramitochondrial phosphorylation potentials. In this way, mtCK contributes to ensure optimal kinetic conditions for ATP-splitting reactions in the extramitochondrial compartment.  相似文献   

10.
The outer mitochondrial membrane receptor for hexokinase binding has been identified as the VDAC protein, also known as mitochondrial porin. The ability of the receptor to bind hexokinase is inhibited by pretreatment with dicyclohexylcarbodiimide (DCCD). At low concentrations, DCCD inhibits hexokinase binding by covalently labeling the VDAC protein, with no apparent effect on VDAC channel-forming activity. The stoichiometry of [14C]-DCCD labeling is consistent with one to two high-affinity DCCD-binding sites per VDAC monomer. A comparison between the sequence of yeast VDAC and a conserved sequence found at DCCD-binding sites of several membrane proteins showed two sites where the yeast VDAC amino acid sequence appears to be very similar to the conserved DCCD-binding sequence. Both of these sites are located near the C-terminal end of yeast VDAC (residues 257–265 and 275–283). These results are consistent with a model in which the C-terminal end of VDAC is involved in binding to the N-terminal end of hexokinase.  相似文献   

11.
The protein(s) responsible for metabolite transport through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria depleted of mitochondrial porin (also known as voltage-dependent anion selective channel), termed here porin1, is (are) still unidentified. It is postulated that the transport may be supported by the protein import machinery of the outer membrane, the TOM complex (translocase of the outer membrane). We demonstrate here that in the absence of functional porin1, the blockage of the TOM complex by the fusion protein termed pb(2)-DHFR (consisting of the first 167 amino acids of yeast cytochrome b(2) preprotein connected to mouse dihydrofolate reductase) limits the access of external NADH to mitochondria. It was measured by the ability of the blockage to inhibit external NADH oxidation by the proper dehydrogenase located at the outer surface of the inner membrane. The inhibition depends on external NADH concentration and increases with decreasing amounts of the substrate. In the presence of 1 microg of pb(2)-DHFR per 50 microg of mitochondrial protein almost quantitative inhibition was observed when external NADH was applied at the concentration of 70 nmol per mg of mitochondrial protein. On the other hand, external NADH decreases the levels of pb(2)-DHFR binding at the trans site of the TOM complex in porin1-depleted mitochondria in a concentration-dependent fashion. Our data define an important role of the TOM complex in the transport of external NADH across the outer membrane of porin1-depleted mitochondria.  相似文献   

12.
Cross-linking analysis of yeast mitochondrial outer membrane   总被引:2,自引:0,他引:2  
By enrichment of contact sites between the two mitochondrial boundary membranes it has been shown that this fraction contained a high activity of glutathione transferase and hexokinase which was bound to the outer membrane pore protein (Ohlendieck, K. et al. (1986) Biochim. Biophys. Acta 860, 672-689). Therefore, an interaction between the three proteins in the contact sites has been suggested. Cross-linking experiments with isolated outer membrane of yeast mitochondria show that glutathione transferase and the pore protein are already associated in the free outer membrane. Porin appeared to adopt four different oligomeric complexes in the membrane, including interactions with a 14 kDa polypeptide, which has glutathione transferase activity. The latter polypeptide could be phosphorylated by intrinsic or extrinsic protein kinases, while the porin itself was not phosphorylated. Yeast hexokinase, when bound to the outer membrane, was able to cross-link to the pore protein.  相似文献   

13.
The contents of mitochondrial inner membrane protein complexes were compared in normal liver and in Zajdela hepatoma mitochondria by the immunotransfer technique. Antibodies against core proteins 1 and 2, cytochrome c1, the iron-sulfur protein of Complex III, subunits I and II of cytochrome oxidase, and the alpha and beta subunits of the F1-ATPase were used. In addition, antibodies against a primary dehydrogenase, beta-hydroxybutyrate dehydrogenase, as well as the outer membrane pore protein were used. The results indicate that the components of the cytochrome chain and porin are greatly enriched in hepatoma mitochondria compared to normal rat liver mitochondria. This enrichment was also reflected in the rates of respiration in tumor mitochondria using a variety of substrates. Enrichment of porin may partially account for increased hexokinase binding to tumor mitochondria. In contrast to the respiratory chain components, the F1-ATPase and F0 (measured by DCCD binding) were not increased in tumor mitochondria. Thus, Zajdela hepatoma mitochondria components are nonstoichiometric, being enriched in oxidative capacity but relatively deficient in ATP synthesizing capacity. Finally, beta-hydroxybutyrate dehydrogenase, which is often decreased in hepatoma mitochondria, was shown here by immunological methods to be decreased by only 40%, whereas enzyme activity was less than 5% of that in normal rat liver.  相似文献   

14.
Brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) binds selectively to the outer membrane of rat liver mitochondria but not to inner mitochondrial or microsomal membranes nor to the plasma membrane of human erythrocytes. A protein having subunit molecular weight of 31,000, determined by sodium dodecyl sulfate-gel electrophoresis, has been highly purified from the outer mitochondrial membrane by repetitive solubilization with octyl-beta-D-glucopyranoside followed by reconstitution into membranous vesicles when the detergent is removed by dialysis. When incorporated into lipid vesicles, the protein confers the ability to bind brain hexokinase in a Glc-6-P-sensitive manner as is seen with the intact outer mitochondrial membrane. Hexokinase binding ability and the 31,000 subunit molecular weight protein co-sediment during sucrose density gradient centrifugation. Both hexokinase binding ability and the 31,000 subunit molecular weight protein are resistant to protease treatment of the intact outer mitochondrial membrane while other membrane proteins are extensively degraded. It is concluded that this protein, designated the hexokinase-binding protein (HBP), is an integral membrane protein responsible for the selective binding of hexokinase by the outer mitochondrial membrane.  相似文献   

15.
A number of amphipathic peptides were tested for their effects on structural and functional properties of isolated rat liver mitochondria. The peptides included the matrix targeting sequence of subunit IV of (yeast) cytochromec oxidase. Titration experiments in which the mitochondria were incubated with increasing concentrations of the peptides revealed two major stages in the interaction. First, at low peptide/mitochondria ratios, peptide binding to the outer membrane occurred which was accompanied by gradual lysis of the outer membrane at higher ratios. The latter was deduced from the release of adenylate kinase, the classical marker enzyme of the intermembrane space. Secondly, at still higher peptide/mitochondria ratios, the permeability of the inner membrane progressively increased, as evidenced by measurements of respiratory control and of the membrane potential. Complete uncoupling of respiration seemed to precede dissipation of the membrane potential.  相似文献   

16.
Yeast porin, the major outer mitochondrial membrane protein, is synthesized without a cleavable extension peptide and post-translationally inserted into the membrane. When inserted into the membrane, it acquires resistance to externally added trypsin. To locate the sequences responsible for membrane insertion and topogenesis in the primary structure of yeast porin, we constructed several deletion and chimeric mutants of the porin cDNA. These cDNAs were expressed in vitro and the products were assayed for capacity to be correctly inserted into isolated mitochondria. It was thus found that deletion of the segment spanning residues 37-98 did not appreciably impair the insertion competence and the inserted protein became resistant to trypsin. On the other hand, the porin mutant lacking the segment consisting of residues 17-98 did not acquire the trypsin resistance, though it could bind to mitochondria specifically. Deletion of the carboxy-terminal 62 amino acid residues also abolished the capacity to be correctly inserted into mitochondria. We conclude that information required for membrane insertion and intramembranous topogenesis of the porin molecule is stored not only in the amino-terminal region but also in the carboxy-terminal portion.  相似文献   

17.
Purified mitochondria from rat brain contain microtubule-associated proteins (MAPs) bound to the outer membrane. Studies of binding in vitro performed with microtubules and with purified microtubule proteins showed that mitochondria preferentially interact with the high-molecular-mass MAPs (and not with Tau protein). Incubation of intact mitochondria with Taxol-stabilized microtubules resulted in the selective trapping of both MAPs 1 and 2 on mitochondria, indicating that an interaction between the two organelles occurred through a site on the arm-like projection of MAPs. Two MAP-binding sites were located on intact mitochondria. The lower-affinity MAP2-binding site (Kd = 2 x 10(-7) M) was preserved and enriched in the outer-membrane fraction, whereas the higher-affinity site (Kd = 1 x 10(-9) M) was destroyed after removing the outer membrane with digitonin. Detergent fractionation of mitochondrial outer membranes saturated with MAP2 bound in vitro showed that MAPs are associated with membrane fragments which contain the pore-forming protein (porin). MAP2 also partially prevents the solubilization of porin from outer membrane, indicating a MAP-induced change in the membrane environment of porin. These observations demonstrate the presence of specific MAP-binding sites on the outer membrane, suggesting an association between porin and the membrane domain involved in the cross-linkage between microtubules and mitochondria.  相似文献   

18.
Porin, an intrinsic protein of outer mitochondrial membranes of rat liver, was synthesized in vitro in a cell-free in a cell-free translation system with rat liver RNA. The apparent molecular mass of porin synthesized in vitro was the same as that of its mature form (34 kDa). This porin was post-translationally integrated into the outer membrane of rat liver mitochondria when the cell-free translation products were incubated with mitochondria at 30 degrees C even in the presence of a protonophore (carbonyl cyanide m-chlorophenylhydrazone). Therefore, the integration of porin seemed to proceed energy-independently as reported by Freitag et al. [(1982) Eur. J. Biochem. 126, 197-202]. Its integration seemed, however, to require the participation of the inner membrane, since porin was not integrated when isolated outer mitochondrial membranes alone were incubated with the translation products. Porin in the cell-free translation products bound to the outside of the outer mitochondrial membrane when incubated with intact mitochondria at 0 degrees C for 5 min. When the incubation period at 0 degrees C was prolonged to 60 min, this porin was found in the inner membrane fraction, which contained monoamine oxidase, suggesting that porin might bind to a specific site on the outer membrane in contact or fused with the inner membrane (a so-called OM-IM site). This porin bound to the OM-IM site was integrated into the outer membrane when the membrane fraction was incubated at 30 degrees C for 60 min. These observations suggest that porin bound to the outside of the outer mitochondrial membrane is integrated into the outer membrane at the OM-IM site by some temperature-dependent process(es).  相似文献   

19.
In rapidly growing, highly glycolytic hepatoma cells as much as 65% of the total cell hexokinase is bound to the outer mitochondrial membrane [Parry, D.M., & Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912]. In this paper, we describe the purification to apparent homogeneity of a mitochondrial pore-forming protein from the highly glycolytic AS-30D rat hepatoma cell line. The purified protein shows a single 35 000-dalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an amino acid composition slightly more hydrophobic than that of the rat liver pore protein (also known as VDAC or mitochondrial porin), and a channel-forming activity of 136 channels min-1 (microgram of protein)-1. In addition to displaying the properties characteristic of VDAC (single-channel conductance, voltage dependence, and preference for anions), we observe that the AS-30D VDAC protein is one of only three mitochondrial proteins that bind [14C]dicyclohexylcarbodiimide (DCCD) at relatively low dosages (2 nmol of DCCD/mg of mitochondrial protein). Significantly, treatment of intact mitochondria isolated from either rat liver or the AS-30D hepatoma with DCCD results in an almost complete inhibition of their ability to binding hexokinase. Fifty percent inhibition of binding occurs at less than 2 nmol of DCCD/mg of mitochondrial protein. In contrast to DCCD, water-soluble carbodiimides are without effect on hexokinase binding. These results suggest that the pore-forming protein of tumor mitochondria forms at least part of the hexokinase receptor complex. In addition, they indicate that a carboxyl residue located within a hydrophobic region of the receptor complex may play a critical role in hexokinase binding.  相似文献   

20.
The yeast mitochondrial outer membrane contains a major 70 kd protein with an amino-terminal hydrophobic membrane anchor and a hydrophilic 60 kd domain exposed to the cytosol. We now show that this protein (which we term MAS70) accelerates the mitochondrial import of many (but not all) precursor proteins. Anti-MAS70 IgGs or removal of MAS70 from the mitochondria by either mild trypsin treatment or by disrupting the nuclear MAS70 gene inhibits import of the F1-ATPase beta-subunit, the ADP/ATP translocator, and of several other precursors into isolated mitochondria by up to 75%, but has little effect on the import of porin. Intact cells of a mas70 null mutant import the F1-ATPase alpha-subunit and beta-subunits, cytochrome c1 and other precursors at least several fold more slowly than wild-type cells. Removal of MAS70 from wild-type mitochondria inhibits binding of the ADP/ATP translocator to the mitochondrial surface, indicating that MAS70 mediates one of the earliest import steps. Several precursors are thus imported by a pathway in which MAS70 functions as a receptor-like component. MAS70 is not essential for import of these precursors, but only accelerates this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号