首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Details are presented of the composition of the diet of eastern lowland gorillas, derived mainly from a study of their fresh trails and fecal analysis, during the course of an entire year in the tropical lowland forests of the Itebero region, Zaire. Gorillas ate 194 plant foods from 121 species and 45 families. They consumed 48 species of fruits; and 89% of fecal samples contained fruit seeds, but fruits were a relatively small part (25%) of the total number of food items. The composition of their diet changed seasonally. When consumption of fruit decreased in the long rainy and the long dry seasons, the gorillas ate, in addition to Zingiberaceae and Marantaceae, many kinds of leaf and bark, which may be an important buffer against the shortage of fruits. Gorillas also fed regularly on ants (Ponerinae), and the frequency of consumption showed small seasonal variations. From a comparison of diet composition, eastern lowland gorillas appeared to be intermediate between the other two subspecies. The choice of food showed differences in preference of fruits and insects between subspecies and may reflect high similarities within subspecies in lowland and montane forests.  相似文献   

2.
We compared day-journey length and daily diets of solitary male gorillas in lowland versus highland habitats. Solitary males in tropical forests of Zaire tend to travel longer distances, to visit more types of vegetation, and to consume more kinds of food than a solitary male mountain gorilla in the Virunga Volcanoes did. The number of feeding sites per day is larger and the mean distance between feeding sites is far longer for the former than the latter. These observations may reflect differences in food breadth and availability between highland and lowland habitats. The herbaceous plants that are eaten by mountain gorillas are densely and evenly distributed in the higher montane forest of the Virungas, where gorillas need not cover long distances to search for food. In contrast, herbaceous plants are scarce in primary and ancient secondary forests of lowland habitats, where gorillas travel long distances and eat various fruits and insects. The patchy and unpredictable distribution of foods may extend the distances over which gorillas search for food in the lowland habitat. However, solitary males showed a prominent reduction in day-journey length and changed their choices of food during the nonfruiting season (the long rainy and dry seasons) in the lowland habitats. This strategy may have developed during the Pleistocene and may have enabled them to enlarge their ranges to the higher montane forests, where fruits are sparse throughout the year.  相似文献   

3.
Variability in ant eating has been observed in several populations of eastern and western gorillas. We investigated the occurrence of ant (Dorylus sp.) eating in two groups of mountain gorillas (Gorilla beringei beringei) with overlapping home ranges within Bwindi Impenetrable National Park, Uganda from September 2001 to August 2002. We calculated the frequency of ant eating by an indirect method of analyzing fecal samples from silverbacks, adult females, and juveniles. One group consumed ants significantly more often than the other (3.3 vs 17.6% of days sampled). Furthermore, the group that consumed ants more often also consumed them on a seasonal basis (September–February monthly range: 0–8%; March–August monthly range: 30–42.9%). Finally, females and juveniles of this group consumed ants significantly more often than did the silverback (total samples containing ants: silverback, 2.1%; adult female, 13.2%; juvenile, 11.2%). Differences in ant eating between groups are likely due to variability in use of habitats where ants occur (particularly secondary forests). Surveys of ant densities in differing habitats, nutritional analysis of ants, and quantification of the amount of ants in their diets are necessary to understand if ant consumption is due to availability, nutritional value, group traditions, or taste preference.  相似文献   

4.
Based on 8 years of observations of a group of western lowland gorillas (Gorilla beringei graueri) and a unit-group of chimpanzees (Pan troglodytes schweinfurthii) living sympatrically in the montane forest at Kahuzi–Biega National Park, we compared their diet and analyzed dietary overlap between them in relation to fruit phenology. Data on fruit consumption were collected mainly from fecal samples, and phenology of preferred ape fruits was estimated by monitoring. Totals of 231 plant foods (116 species) and 137 plant foods (104 species) were recorded for gorillas and chimpanzees, respectively. Among these, 38% of gorilla foods and 64% of chimpanzee foods were eaten by both apes. Fruits accounted for the largest overlap between them (77% for gorillas and 59% for chimpanzees). Gorillas consumed more species of vegetative foods (especially bark) exclusively whereas chimpanzees consumed more species of fruits and animal foods exclusively. Although the number of fruit species available in the montane forest of Kahuzi is much lower than that in lowland forest, the number of fruit species per chimpanzee fecal sample (average 2.7 species) was similar to that for chimpanzees in the lowland habitats. By contrast, the number of fruit species per gorilla fecal sample (average 0.8 species) was much lower than that for gorillas in the lowland habitats. Fruit consumption by both apes tended to increase during the dry season when ripe fruits were more abundant in their habitat. However, the number of fruit species consumed by chimpanzees did not change according to ripe fruit abundance. The species differences in fruit consumption may be attributed to the wide ranging of gorillas and repeated usage of a small range by chimpanzees and/or to avoidance of inter-specific contact by chimpanzees. The different staple foods (leaves and bark for gorillas and fig fruits for chimpanzees) characterize the dietary divergence between them in the montane forest of Kahuzi, where fruit is usually scarce. Gorillas rarely fed on insects, but chimpanzees occasionally fed on bees with honey, which possibly compensate for fruit scarcity. A comparison of dietary overlap between gorillas and chimpanzees across habitats suggests that sympatry may not influence dietary overlap in fruit consumed but may stimulate behavioral divergence to reduce feeding competition between them.  相似文献   

5.
Traditionally, gorillas were classified as folivores, yet 15 years of data on western lowland gorillas (Gorilla gorilla gorilla) show their diet to contain large quantities of foliage and fruit, and to vary both seasonally and annually. The consumption of fruit by gorillas at Bai Hokou, Central African Republic, is correlated with rainfall and ripe fruit availability (Remis, 1997a). We investigated the nutritional and chemical content of gorilla foods consumed at Bai Hokou during two seasons of fruit scarcity as measured by phenological observations and compared our findings with the nutrient content of gorilla foods at other African sites. We conclude that during lean times, Bai Hokou gorillas consumed fruits with higher levels of fiber and secondary compounds than those of other populations of western lowland or mountain gorillas. Conversely, leaves consumed by Bai Hokou gorillas were relatively low in fiber and tannins. Bai Hokou gorillas appeared to meet their nutritional needs by eating a combination of fruit and foliage. They ate fruits comparatively high in secondary compounds and fiber when necessary. While gorillas are selective feeders, wherever and whenever preferred foods are scarce, their large body size and digestive anatomy enable them to consume and process a broader repertoire of foods than smaller bodied-apes.  相似文献   

6.
Sympatric populations of lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the Lopé Reserve in central Gabon consumed insects at similar average frequencies over a 7-year period (30% versus 31% feces contained insect remains). Data came mostly from fecal analysis supplemented by observation and trail evidence. The weaver ant (Oecophylla longinoda) was the species eaten most frequently by both gorillas and chimpanzees. Other species of insects wore eaten but there was virtually no overlap: Chimpanzees used tools to eat Apis bees (and their honey) and two large species of ants; gorillas ate three species of small ants. Thus, despite their shared habitat, the esources utilized were not identical as gorillas do not show the tool-use “technology” of chimpanzees. The frequency of insect-eating by both species of ape varied seasonally and between years but in different ways. This variation did not seem to be related to the ratio of fruit to foliage in their diets. Gorillas of all age-classes ate insects at similar rates. Comparisons with insectivory by other populations of gorillas indicate differences exist. Mountain gorillas (Gorilla g. beringei) in the Virunga Volcanoes, Rwanda, consume thousands of invertebrates daily, eating them inadvertently with handfuls of herbaceous foods but they deliberately ingest insect-foods only rarely. Lowland gorillas at Lopé habitually ate social insects, and their selective processing of herbaceous foods probably minimizes inadvertent consumption of other invertebrates. Gorillas at Belinga in northeastern Gabon, 250 km from Lop6, ate social insects at similar rates but ignored weaver ants in favor of Cubitermes sulcifrons, a small species of termite that occurs at Lopé but was not eaten by gorillas. This indicates that local traditions similar to those reported for chimpanzees also exist amongst populations of gorillas. © 1992 Wiley-Liss, Inc.  相似文献   

7.
Determining the composition of primate diet and identifying factors that affect food choice are important in understanding habitat requirements of primates and designing conservation plans. We studied the diet of Cross River gorillas (Gorilla gorilla diehli) in relation to availability of food resources, in a semideciduous lowland forest site (Mawambi Hills) in Cameroon, from November 2009 to September 2011. Based on 109 d of feeding trail data, 203 fecal samples, and 22 mo of phenological monitoring, we determined that gorillas consumed a total of 242 food items, including 240 plant items from 186 species and 55 taxonomic families. Mawambi gorillas diversified fruit consumption when fruit availability increased, and consumed more fibrous foods (pith, leaf, bark) during times of fruit scarcity, consistent with results of other gorilla studies. However, fruit availability was not related to rainfall, and the period of fruit scarcity was more pronounced at Mawambi than at other gorilla study sites, due to a single long dry season and extreme rainfall at the end of the rainy season that delayed fruit production and ripening. We found no relationship between the daily path length of the gorillas and fruit consumption. We found feeding habits of Mawambi gorillas to be notably similar to those of a population of Cross River gorillas at Afi Mountain, Nigeria, although subtle differences existed, possibly due to site-specific differences in forest composition and altitude. At both sites the liana Landolphia spp. was the single most important food species: the leaves are a staple and the fruits are consumed during periods of fruit scarcity. Snails and maggots were consumed but we observed no further faunivory. We suggest that tree leaves and lianas are important fallback food sources in the gorilla diet in seasonally dry forests.  相似文献   

8.
Julie J. Calvert 《Oecologia》1985,65(2):236-246
Summary Samples of stems, leaves, shoots and fruit (N=36) from lowland, African rain forest are analyzed for nutrients, digestibility and digestion-inhibiting substances. Plants from which the samples are drawn are all important in the diet of western gorillas, large generalist herbivores in coastal Cameroon. Many of the plants are common in the early succession following disturbance to the forest. Analysis of food chemistry in relation to food preference indicates that lignin, digestibility and crude protein are the most significant factors in food selection for western gorillas at this site. Food chemistry of western gorillas is compared to food chemistry of mountain gorillas in the montane forest of East Africa. Foliage consumed by western gorillas contains more condensed tannin than does foliage consumed by mountain gorillas. The greater content of condensed tannin in the leaves consumed by western gorillas is related to the greater representation of woody plants in the western diet.  相似文献   

9.
We describe the resource availability and diet of western lowland gorillas (Gorilla gorilla gorilla) from a new study site in the Central African Republic and Republic of Congo based on 3 years of study. The results, based on 715 fecal samples and 617 days of feeding trails, were similar to those reported from three other sites, in spite of differences in herb and fruit availability. Staple foods (consumed year-round) included high-quality herbs (Haumania), swamp herbs (when present), and a minimal diversity of fruit. A variety of fruits (average of 3.5 species per day and 10 per month) were selectively consumed; gorillas ignored some common fruits and incorporated rare fruits to a degree higher than predicted based on availability. During periods of fruit abundance, fruit constituted most of the diet. When succulent fruits were unavailable, gorillas used low-quality herbs (i.e., low-protein), bark, and more fibrous fruits as fallback foods. Fibrous fruit species, such as Duboscia macrocarpa and Klainedoxa gabonensis, were particularly important to gorillas at Mondika and other sites as fallbacks. The densities of these two species are similar across sites for which data are available, in spite of major differences in forest structure, suggesting they may be key species in determining gorilla density. No sex difference in diet was detected. Such little variation in western lowland gorilla diet across sites and between sexes was unexpected and may partly reflect limitations of indirect sampling.  相似文献   

10.
Data on foods consumed by gorillas and chimpanzees living in primary forest in Gabon were collected, mainly by examination of the contents of feces. Gorillas ate fruit very regularly (some fruit remains were present in 97.6% of 246 fecal samples examined), in addition to leaves, stems, pith, and bark. Some fruit remains were present in all chimpanzee fecal samples examined. Mean numbers of fruit species per fecal sample were 2.5 for gorillas and 2.1 for chimpanzees. Sixty percent of all identified foods recorded for gorillas were recorded for chimpanzees as well. Our results indicate that important differences in diet exist between western lowland gorillas and the eastern gorilla populations of Kahuzi-Biega and the Virunga Volcanoes. It is now clear that western gorillas cannot be accurately classed as folivores.  相似文献   

11.
We describe the diet of a semihabituated group of Grauer's gorillas (Gorilla beringei graueri) inhabiting the montane forest of Kahuzi-Biega National Park, Democratic Republic of Congo, based on direct observations, feeding remains in their fresh trails, and fecal samples collected over 9 yr. We examined fruit availability in their habitat; consumption of fruit, vegetative, and animal food; and daily intake of vegetative plant food using a transect, fruit monitoring trails, fecal analysis, and tracing of the animal's daily trails between consecutive nest sites. The fruit food repertoire of Kahuzi gorillas resembles that of western and eastern lowland gorillas inhabiting lowland tropical forests, while their vegetative food repertoire resembles that of mountain gorillas inhabiting montane forests. Among 236 plant foods (116 species), leaves, pith, and barks constitute the major parts (70.2%), with fruit making up the minor part (19.7%). About half (53.2%) of the total fecal samples included fruit remains. The gorillas used leaves, stems and other vegetative plant parts as staples. Their fruit intake was similar to that reported for mountain gorillas in Bwindi. They ate animal foods, including earthworms, on rare occasions. Variation in fruit consumption was positively associated with variation in fruit production. The gorillas ate fig fruits frequently; fig intake is positively correlated with that of other fruits, and figs were not fallback foods. They relied heavily on bamboo shoots on a seasonal basis; however, no bamboo shoots were available for several years after a major flowering event. Our results support the argument that variation in gorilla diets mostly reflects variation in vegetational composition of their habitats.  相似文献   

12.
Eleven cases of feeding on driver ants (Dorylus sp.) by mountain gorillas (Gorilla gorilla beringei) are described. Ant eating provides the gorillas with more animal protein and other nutrients per unit feeding time than do other forms of insectivory that contribute to their diet, but it is so rare that it is unlikely to be of real nutritional significance. Gorillas obtain ants with their hands and do not use tools. Immature individuals (except infants) ate more ants than did adult females, and silverbacks were not seen to eat ants. These differences are more likely to reflect differences in individual taste and interest in novelty than differences in nutritional strategy. Not all gorillas in the Virungas population eat ants. Intra-population variability may be ecologically contingent, but ant eating appears to be a socially acquired and transmitted taste.  相似文献   

13.
The most important environmental factor explaining interspecies variation in ecology and sociality of the great apes is likely to be variation in resource availability. Relatively little is known about the activity patterns of western lowland gorillas (Gorilla gorilla gorilla), which inhabit a dramatically different environment from the well‐studied mountain gorillas (G. beringei beringei). This study aims to provide a detailed quantification of western lowland gorillas' activity budgets using direct observations on one habituated group in Bai Hokou, Central African Republic. We examined how activity patterns of both sexes are shaped by seasonal frugivory. Activity was recorded with 5‐min instantaneous sampling between December 2004 and December 2005. During the high‐frugivory period the gorillas spent less time feeding and more time traveling than during the low‐frugivory period. The silverback spent less time feeding but more time resting than both females and immatures, which likely results from a combination of social and physiological factors. When compared with mountain gorillas, western lowland gorillas spend more time feeding (67 vs. 55%) and traveling (12 vs. 6.5%), but less time resting (21 vs. 34%) and engaging in social/other activities (0.5 vs. 3.6%). This disparity in activity budgets of western lowland gorillas and mountain gorillas may be explained by the more frugivorous diet and the greater dispersion of food resources experienced by western lowland gorillas. Like other apes, western lowland gorillas change their activity patterns in response to changes in the diet. Am. J. Primatol. 71:91–100, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Some important aspects of the alimentation of the lowland gorillas have been studied in eight different localities in Río Muni (West Africa) during several periods of time from 1956 to 1969; our observations totalize 672 hr, of which 54.5 hr have been of direct visual contact with the animals. Also included are 29 hr of direct visual contact with the mountain gorillas in Rwanda (Central Africa) during the months of July and August, 1972. We list 92 vegetal species and one product of animal origin consumed by these primates. We also analyze the different vegetal products consumed by these animals in different biotopes and in relation to the stational cycles and their organoleptic factors. Our results indicate that the preferred food is made of three different species ofAframomum, and that gorillas like sweet-sour flavors and are attracted by green and intense red colors. We also analyze some behavioral patterns directed to the exploitation of different biotopes (Primary Equatorial Forest) and new vegetable especies introduced by man.  相似文献   

15.
The geographical distribution of genetic variation within western lowland gorillas (Gorilla gorilla gorilla) was examined to clarify the population genetic structure and recent evolutionary history of this group. DNA was amplified from shed hair collected from sites across the range of the three traditionally recognized gorilla subspecies: western lowland (G. g. gorilla), eastern lowland (G. g. graueri) and mountain (G. g. beringei) gorillas. Nucleotide sequence variation was examined in the first hypervariable domain of the mitochondrial control region and was much higher in western lowland gorillas than in either of the other two subspecies. In addition to recapitulating the major evolutionary split between eastern and western lowland gorillas, phylogenetic analysis indicates a phylogeographical division within western lowland gorillas, one haplogroup comprising gorilla populations from eastern Nigeria through to southeast Cameroon and a second comprising all other western lowland gorillas. Within this second haplogroup, haplotypes appear to be partitioned geographically into three subgroups: (i) Equatorial Guinea, (ii) Central African Republic, and (iii) Gabon and adjacent Congo. There is also evidence of limited haplotype admixture in northeastern Gabon and southeast Cameroon. The phylogeographical patterns are broadly consistent with those predicted by current Pleistocene refuge hypotheses for the region and suggest that historical events have played an important role in shaping the population structure of this subspecies.  相似文献   

16.
Studies of wild mountain gorillas have demonstrated strong preferences among new mothers for the silverback. Protection against infanticide has been theorized to be the primary cause for this attraction. We examined social partner preferences in captive western lowland mothers during the 6 mo after parturition and found that juveniles and females were the primary members of the new mothers' social network. Mothers spent significantly more time in close proximity with both of these subgroups than with the silverback. Proximity patterns changed over time: new mothers spent more time near females in the month after parturition than in the month prior to parturition, and spatial proximity increased again in months 2-6 postparturition. These findings differ from those reported for wild mountain gorillas, which may reflect the lack of infanticide risk in captivity. Given current hypotheses that infanticide may be a limited in western lowland gorillas, the social partner preferences observed here may be indicative of patterns in wild populations.  相似文献   

17.
The forests in northwest Republic of Congo contain a number of herbaceous swamp clearings that provide foraging sites for lowland gorillas (G.g. gorilla). A 10-month study at the Maya Nord clearing (Parc National d'Odzala) showed that feeding activities occupied 72% of the time visiting gorillas spent on the clearing. They fed on four plant species: Enydra fluctuans (Asteraceae), Cyperus sp., Pycreus mundtii, and Rhynchospora corymbosa (Cyperaceae) among the 45 species recorded on the clearing. These clearing food species have higher mineral contents (especially Na and Ca) than the dominant Marantaceae species (Haumania liebrechtsiana) that constituted a staple food plant for gorillas in this forest. They also have higher potassium contents and contain less lignin than non-eaten clearing items/species. Finally, the most actively searched for clearing food (Enydra fluctuans) was characterized by the highest amount of Na and Ca. These results suggest that the mineral content (especially in Na, Ca, and/or K) could determine the feeding selectivity of gorillas at the clearing. They also tend to confirm that the amount of fiber plays a deterrent role in food selectivity, as has been found by many authors. The high density of gorillas in that region could result from the combination of the large areas of Marantaceae forests that provide abundant though monotonous food, and the number of clearings that provide sufficient mineral supplies. Clearings should thus be considered as key habitats for the conservation of gorillas.  相似文献   

18.
Recent findings on the strong preference of gorillas for fruits and the large dietary overlap between sympatric gorillas and chimpanzees has led to a debate over the folivorous/frugivorous dichotomy and resource partitioning. To add insight to these arguments, we analyze the diets of sympatric gorillas and chimpanzees inhabiting the montane forest of Kahuzi-Biega National Park (DRC) using a new definition of fallback foods (Marshall and Wrangham: Int J Primatol 28 [2007] 1219–1235). We determined the preferred fruits of Kahuzi chimpanzees and gorillas from direct feeding observations and fecal analyses conducted over an 8-year period. Although there was extensive overlap in the preferred fruits of these two species, gorillas tended to consume fewer fruits with prolonged availability while chimpanzees consumed fruits with large seasonal fluctuations. Fig fruit was defined as a preferred food of chimpanzees, although it may also play a role as the staple fallback food. Animal foods, such as honey bees and ants, appear to constitute filler fallback foods of chimpanzees. Tool use allows chimpanzees to obtain such high-quality fallback foods during periods of fruit scarcity. Among filler fallback foods, terrestrial herbs may enable chimpanzees to live in small home ranges in the montane forest, whereas the availability of animal foods may permit them to expand their home range in arid areas. Staple fallback foods including barks enable gorillas to form cohesive groups with similar home range across habitats irrespective of fruit abundance. These differences in fallback strategies seem to have shaped different social features between sympatric gorillas and chimpanzees. Am J Phys Anthropol 140:739–750, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

19.
Life history is influenced by factors both intrinsic (e.g., body and relative brain size) and extrinsic (e.g., diet, environmental instability) to organisms. In this study, we examine the prediction that energetic risk influences the life history of gorillas. Recent comparisons suggest that the more frugivorous western lowland gorilla shows increased infant dependence, and thus a slower life history, than the primarily folivorous mountain gorilla to buffer against the risk of starvation during periods of food unpredictability. We further tested this hypothesis by incorporating additional life history data from wild western lowland gorillas and captive western lowland gorillas with the assumption that the latter live under ecological conditions of energetic risk that more closely resemble those of mountain gorillas and thus should show faster life histories than wild members of the species. Overall, we found captive western lowland and wild mountain gorillas to have faster developmental life histories than wild western lowland gorillas, weaning their infants approximately a year earlier and thus reducing interbirth intervals by a year. These results provide support that energetic risk plays an important role in determining gorilla life history. Unlike previous assertions, gorillas do not have substantially faster life histories, at least at the genus level, than other great apes. This calls for a re‐evaluation of theories concerning comparative ape life history and evolution and highlights the need for data from additional populations that vary in energetic risk. Am J Phys Anthropol 152:165–172, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
In this paper, I describe the food-dropping behavior of western lowland gorillas observed in Moukalaba-Doudou National Park, Gabon. I collected observational data of gorillas eating in trees, and recorded whether any individuals were positioned under the same tree. In 22 of the 24 cases of individuals being present under a tree, I observed the gorilla in a tree dropping food to the individual below. In most cases, the recipient was a silverback or an elder half-sibling of the dropper. The dropper’s elder full-sibling was never a recipient. The food-dropping behavior of Moukalaba western lowland gorillas is likely due to a combination of factors: their frugivory, arboreality, large body size, and the scarcity of terrestrial herbs. It is difficult for multiple gorillas to simultaneously feed in the same tree. Under such limitations, younger gorillas face difficulties in defending their feeding patches from older individuals. Nearly 90 % of the recipients were older than the food droppers. Furthermore, food droppers were significantly younger than non-food droppers who simultaneously fed on the same tree, and most-food recipients were significantly older than least-food recipients on the ground. Food dropping may, therefore, be a tactic employed by younger gorillas to defend a feeding site from older individuals. This study suggests that food dropping may reduce feeding contest competition in a gorilla group in Moukalaba. This is a preliminary study that indicates that food dropping may be intentionally used as a way to reduce feeding competition; nevertheless, further studies are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号