首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   62篇
  2023年   3篇
  2022年   3篇
  2021年   16篇
  2020年   12篇
  2019年   16篇
  2018年   19篇
  2017年   11篇
  2016年   19篇
  2015年   34篇
  2014年   40篇
  2013年   49篇
  2012年   57篇
  2011年   52篇
  2010年   27篇
  2009年   29篇
  2008年   46篇
  2007年   49篇
  2006年   37篇
  2005年   34篇
  2004年   34篇
  2003年   33篇
  2002年   27篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   8篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1987年   3篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1926年   1篇
  1924年   2篇
  1892年   1篇
  1890年   1篇
  1888年   1篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
1.
Recent evidence suggests that the nutritional state of male Mediterranean fruit flies, Ceratitis capitata (Wied.) (medfly), is an important influence on various components of their reproductive biology, including mating success. The objective of the present study was to examine experimentally the effect of temporary starvation on the mating success of wild male C. capitata. Males were maintained on protein–sugar or sugar-only diets, and for each diet we compared the mating success of continuously fed males versus males starved for 18 or 24 h immediately before testing. In trials conducted on field-caged, host trees, males starved for 24 h obtained only about half as many matings as fed males for both diets. However, when the starvation period was 18 h, starved males reared on the protein–sugar diet mated significantly less frequently than fed males, whereas starved males reared on sugar mated as often as fed males. Measurements of male pheromone calling and female attraction revealed that reduced mating success likely reflected the decreased signaling activity of starved males.  相似文献   
2.
3.
We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.  相似文献   
4.
Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.  相似文献   
5.
The sterile insect technique (SIT) is used to control Mediterranean fruit fly, Ceratitis capitata (Wiedemann), but its effectiveness is limited by low sexual competitiveness of mass‐reared males. This study investigated whether wild and mass‐reared [from a temperature sensitive lethal (tsl) genetic sexing strain] females display similar mate preferences and thus exert similar selective forces on the evolution of male courtship behaviour. Wild females preferred wild males over tsl males, whereas tsl females mated indiscriminately. The probability that mounting resulted in copulation was related to the duration of pre‐mount courtship for wild females, and wild males performed longer courtships than tsl males. Copulation occurred independently of courtship duration in tsl females. Counter to the aim of the SIT, female choice by tsl females appears to promote the evolution of male behaviour disfavoured by wild females.  相似文献   
6.
A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to this limit, which may explain why it has the smallest known mitotic spindle that still manifests the classic congression architecture.  相似文献   
7.
8.
9.
The analysis of dental microwear is commonly used by paleontologists and anthropologists to clarify the diets of extinct species, including herbivorous and carnivorous mammals. Currently, there are numerous methods employed to quantify dental microwear, varying in the types of microscopes used, magnifications, and the characterization of wear in both two dimensions and three dimensions. Results from dental microwear studies utilizing different methods are not directly comparable and human quantification of wear features (e.g., pits and scratches) introduces interobserver error, with higher error being produced by less experienced individuals. Dental microwear texture analysis (DMTA), which analyzes microwear features in three dimensions, alleviates some of the problems surrounding two-dimensional microwear methods by reducing observer bias. Here, we assess the accuracy and comparability within and between 2D and 3D dental microwear analyses in herbivorous and carnivorous mammals at the same magnification. Specifically, we compare observer-generated 2D microwear data from photosimulations of the identical scanned areas of DMTA in extant African bovids and carnivorans using a scanning white light confocal microscope at 100x magnification. Using this magnification, dental microwear features quantified in 2D were able to separate grazing and frugivorous bovids using scratch frequency; however, DMTA variables were better able to discriminate between disparate dietary niches in both carnivorous and herbivorous mammals. Further, results demonstrate significant interobserver differences in 2D microwear data, with the microwear index remaining the least variable between experienced observers, consistent with prior research. Overall, our results highlight the importance of reducing observer error and analyzing dental microwear in three dimensions in order to consistently interpret diets accurately.  相似文献   
10.
The male annihilation technique (MAT) and sterile insect technique (SIT) are often used to control pestiferous tephritid fruit flies (Diptera: Tephritidae). MAT involves the deployment of traps containing a male attractant and insecticide with the goal of drastically reducing male abundance and ultimately eliminating the entire population. SIT, which involves the mass production, sterilization, and release of the target species, may also be implemented to achieve final extirpation. Generally, simultaneous implementation of MAT and SIT is counterproductive, because the presence of large numbers of male-specific traps in the environment (MAT) would greatly reduce the number of sterile males available for copulating with wild females (SIT). However, studies on the Queensland fruit fly, Bactrocera tryoni (Froggatt), indicate that concurrent use of MAT and SIT may be feasible. Sexually mature males of B. tryoni are attracted to the raspberry ketone and its synthetic analogue cue-lure. Males of B. tryoni fed raspberry-ketone-supplemented diet when newly emerged showed lower attraction to cue-lure baited traps than control males. In addition, newly emerged males provided this diet displayed accelerated sexual maturation, which would allow the early release of sterile males and reduce pre-release holding costs. Here, we examined whether the addition of raspberry ketone to the adult diet of male melon flies, Zeugodacus cucurbitae (Coquillett), produced effects similar to those observed for B. tryoni. Despite using similar methods, no significant effect of raspberry ketone-supplemented diet on time to sexual maturity, survival, mating competitiveness, or attraction to cue-lure baited traps in mass-reared Z. cucurbitae males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号