首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV–visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO–LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor–acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor–acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide–protein interaction.  相似文献   

2.
Amonafide is a naphthalimide derivative with antitumor activity and has failed to enter clinical phase III, because of its high-variable and unpredictable toxicity. In order to develop selective, efficient, and safe drugs, applying the ‘nonfused’ aromatic system strategy, a series of 5-non-amino aromatic substituted naphthalimides as replacement for amonafide were designed and were synthesized from naphthalic anhydride by three steps including bromination, amination, and Pd(PPh3)4 catalyzed Suzuki reaction. These new naphthalimide derivatives, except 4b, not only exhibited better activity than amonafide against HeLa and P388D1 cell lines in vitro under the same experimental conditions, but also could avoid the side effect of amonafide due to their structure, which lacks an easy acetylated arylamine at the 5 position. The DNA-binding behavior of the naphthalimide derivatives was also investigated, and the results suggested that they bind to DNA via intercalation and 4a and 4g intercalated into DNA in different fashion.  相似文献   

3.
Large-Stokes-shift based simple folded DNA probing system (LSFP) had a simple folded DNA structure and exhibited a large Stokes-shifted (194?nm) fluorescence signal upon excitation at a single wavelength (386?nm). This Stokes shift was achieved through a simple combination of donor and acceptor fluorophores and employing multi-FRET systematically. This unique large Stokes-shifted fluorescence signal was used to detect target DNA with large increases in the fluorescence signal (9.7–14.2 fold). This LSFP exhibited enough selectivity, distinguishing a perfectly matched sequence from the probe itself and mismatched sequences. Surprisingly, when DSN was used for signal amplification with miR21P probing system whose target is miRNA 21, it showed high sensitivity (13.7?aM) and selectivity (one base mismatch discrimination). This system has several advantages over other molecular beacons (MBs): (i) it is easy to design and synthesize the probing system that does not require the construction of a finely designed stem and loop, as in most MBs (this can prevent the degradation of miR21P itself by DSN enzyme without special backbone modification); (ii) it can control unique fluorescence, such as large Stokes-shifted fluorescence through a simple combination of donor and acceptor fluorophores; and (iii) through signal amplification using DSN, it can efficiently detect extremely small amounts of target miRNA with high sensitivity (13.7?aM).  相似文献   

4.
One of the regulatory mechanisms of epigenetic gene expression is the post-translational methylation of arginine residues, which is catalyzed by protein arginine methyltransferases (PRMTs). Abnormal expression of PRMT4/CARM1, one of the PRMTs, is associated with various diseases, including cancers. Here, we designed and synthesized a Förster resonance energy transfer (FRET)-based probe, FRC, which contains coumarin and fluorescein fluorophores at the N-terminus and C-terminus of a peptide containing an arginine residue within an appropriate amino acid sequence to serve as a substrate of CARM1; the two fluorophores act as a FRET donor and a FRET acceptor, respectively. Since trypsin specifically hydrolyzes the arginine residue, but not a monomethylarginine or dimethylarginine residue, CARM1 activity can be evaluated from the change of the coumarin/fluorescein fluorescence ratio of FRC in the presence of trypsin.  相似文献   

5.
The effect of solvents of varying polarity and hydrogen bonding ability, solvent mixture and silver nanoparticles on the photophysical properties of a ketocyanine dye, 2,5‐di[(E)‐1‐(4‐diethylaminophenyl) methylidine]‐1‐cyclopentanone (2,5‐DEAPMC), is investigated at room temperature. Solvent effect is analyzed using Lippert–Mataga bulk polarity function, Reichardt's microscopic solvent polarity parameter, and Kamlet's and Catalan's multiple linear regression approaches. The spectral properties better follow Reichardt's microscopic solvent polarity parameter than the Lippert–Mataga bulk polarity function. This indicates that both general and specific solute–solvent interactions are operative. Kamlet's and Catalan's multiple linear regression approaches indicate that polarizability/dipolarity solvent influences are greater than hydrogen bond donor and hydrogen bond acceptor solvent influences. The solvatochromic correlations are used to estimate excited state dipole moment using the experimentally determined ground state dipole moment. The excited state dipole moment of the dye is found to be larger than its corresponding ground state dipole moment and ground and excited state dipole moments are not parallel, but subtend an angle of 77°. The absorption and emission spectra are modulated in the presence silver nanoparticles. The fluorescence of 2,5‐DEAPMC is quenched by silver nanoparticles. The possible fluorescence quenching mechanisms are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The development of amyloid-specific fluorophores allows the visualization of cerebral β-amyloid deposits using optical imaging technology. In the present study, a series of smart styrylpyran fluorophores with compact donor–acceptor architecture were designed and evaluated for noninvasive detection of cerebral β-amyloid deposits. Spectral behavior of the fluorophores changed significantly (optical turn-on) upon binding to β-amyloid aggregates. Computational studies were conducted to correlate the experimental Kd values with calculated binding energies, speculating the relationship between fluorophore structure and β-amyloid affinity. In vivo studies demonstrated that PAD-2 could discriminate APP/PS1 transgenic mice from wild type controls, with specific labeling of cerebral β-amyloid deposits confirmed by ex vivo observation. Collectively, these styrylpyran fluorophores could provide a new scaffold for the development of optical imaging probes targeting cerebral β-amyloid deposits.  相似文献   

7.
Novel naphthalimide–poly(amidoamine) dendrimer fluorescent dyes were synthesized, and their structures were identified and confirmed using different characterization methods such as Fourier transform infrared, 1H NMR, 13C NMR, differential scanning calorimetry, elemental analysis and UV–vis spectroscopy. The spectrophotometric studies demonstrated absorption maxima (λmax) and extinction coefficient (εmax) values in the ranges of 429–438 nm and 25,635–88,618 L/mol/cm, respectively. The dyeing, fastness and antimicrobial properties of dyed wool fibers were examined. Colorimetric measurements demonstrated a greenish‐yellow hue with remarkable fluorescence intensity on dyed wool. Although the fastness properties of naphthalimide dye on wool fibers were poor/moderate, color fastness was appreciably improved through modification of the dye using dendrimers. The results revealed that the newly synthesized dyes are potent antimicrobial agents on wool fibers. Overall, it was deduced that poly(amidoamine) (PAMAM) dendrimers could be exploited as a promising tool in tailoring the different properties of naphthalimide dyes, being suitable for dyeing and antimicrobial finishing agents for wool fibers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) is a high-resolution technique that allows the characterization of spatial and temporal properties of biological structures and mechanisms. In this work, we developed an in silico single-molecule FRET methodology to study the dynamics of fluorophores inside lipid rafts. We monitored the fluorescence of a single acceptor molecule in the presence of several donor molecules. By looking at the average fluorescence, we selected events with single acceptor and donor molecules, and we used them to determine the raft size in the range of 5–16 nm. We conclude that our method is robust and insensitive to variations in the diffusion coefficient, donor density, or selected fluorescence threshold.  相似文献   

9.
The general application of glycoside phosphorylases such as cellobiose phosphorylase (CP) for glycoside synthesis is hindered by their relatively narrow substrate specificity. We have previously reported on the creation of Cellulomonas uda CP enzyme variants with either modified donor or acceptor specificity. Remarkably, in this study it was found that the donor mutant also displays broadened acceptor specificity towards several β‐glucosides. Triple mutants containing donor (T508I/N667A) as well as acceptor mutations (E649C or E649G) also display a broader acceptor specificity than any of the parent enzymes. Moreover, further broadening of the acceptor specificity has been achieved by site‐saturation mutagenesis of residues near the active site entrance. The best enzyme variant contains the additional N156D and N163D mutations and is active towards various alkyl β‐glucosides, methyl α‐glucoside and cellobiose. In comparison with the wild‐type C. uda CP enzyme, which cannot accept anomerically substituted glucosides at all, the obtained increase in substrate specificity is significant. The described CP enzyme variants should be useful for the synthesis of cellobiosides and other glycosides with prebiotic and pharmaceutical properties. Biotechnol. Bioeng. 2010;107: 413–420. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
A series DNA helices of twenty-four base pairs has been prepared for the study of fluorescence resonance energy transfer. Each of the DNA helices contains two phosphorothioate diesters (one in each strand) at pre-selected sites for introduction of the desired donor and acceptor fluorophores. The phosphorothioate-containing oligodeoxynucleotides have been prepared as pure Rp or Sp derivatives or as deastereomeric mixtures. Fluorescein and eosin are employed as the respective donor and acceptor fluorophores. A series of donor-acceptor pairs was generated by labeling of the appropriate phosphorothioate diester with the desired fluorophore and annealing the two complementary DNA strands (one containing the acceptor and one containing the donor fluorophore) to form the double-stranded helix. The 24-mer helices containing two covalently attached fluorophores exhibited some thermal destabilization and the extent of this destabilization was dependent upon the stereochemical orientation of the fluorophore. The Sp derivatives direct the fluorophore out, away from the the DNA helix, while the Rp derivatives direct the fluorophore toward the major groove. As expected, the Sp labeled duplexes were more stable than the corresponding Rp labeled sequences. However, all of the duplex structures formed were stable under the conditions used to measure energy transfer. Energy transfer could be observed with these complexes from the quenching of the donor fluorescence in the presence of the acceptor fluorophore. Using F?rster's theories, distances separating the fluorophores could be calculated that were generally in reasonable agreement with the distances expected in an idealized B-form DNA helix. However anomalous results were obtained for one donor/acceptor pair where the expected distance was less than 20 A. Fluorescence anisotropy values determined in solutions of varying viscosity were quite high suggesting that the fluorophores did not experience complete freedom of movement when attached to the DNA helix.  相似文献   

11.
The plant natural product, valerenic acid (1) was chosen as a desirable scaffold for the generation of a novel screening library due to its drug-like physicochemical parameters (such as Log P, hydrogen bond donor/acceptor counts, and molecular weight). An 11-membered amide library (212) was subsequently generated using parallel solution-phase synthesis and Ghosez’s reagent. The chemical structures of all semi-synthetic analogues (212) were elucidated following analysis of the NMR, MS, UV and IR data. The structures of compounds 8 and 11 were also confirmed by X-ray crystallographic analysis. All library members were evaluated for their ability to inhibit the release of IL-8 and TNF-α. Six analogues showed moderate activity in the IL-8 assay with IC50 values of 2.8–8.3 μM, while none of the tested compounds showed any significant effect on inhibiting TNF-α release.  相似文献   

12.
G-Quadruplex DNAs, formed by G-rich DNA sequences in human genes, are promising targets for design of cancer drugs. In this study, two naphthalimide substituted styryl dyes with different sizes of aromatic groups were synthesized. The spectral analysis showed that the dye X-2 with a large aromatic group formed aggregates in buffer solution displaying very weak fluorescence intensity, and disaggregated in the presence of G-Quadruplex DNAs with large intensity enhancements (up to ~1800 fold). Moreover, X-2 displayed good selectivity to G-Quadruplex DNAs. In contrast, dye X-3 with the smaller aromatic group had much lower fluorescence enhancements and poor selectivity to G-Quadruplex DNAs, suggesting that the suitably sized aromatic ring was essential for the interaction with G-Quadruplex. Further binding studies suggested that X-2 mainly bound on G-quartet surface through end-stacking mode. Cytotoxicity assay showed that both of the two dyes showed good anti-proliferative activities against the cancer cell lines and less cytotoxicity in non-malignant cell lines, which were better than a standard drug 5-fluorouracil. In addition, living cell imaging was also studied and demonstrated the potential applications of the new dye X-2 in bioassays and cell imaging.  相似文献   

13.
14.
Ligands incorporating a tetraazamacrocycle receptor, a ‘click’- derived triazole and a 1,8-naphthalimide fluorophore have proven utility as probes for metal ions. Three new cyclam-based molecular probes are reported, in which a piperidinyl group has been introduced at the 4-position of the naphthalimide fluorophore. These compounds have been synthesized using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and their photophysical properties studied in detail. The alkylamino group induces the expected red-shift in absorption and emission spectra relative to the simple naphthalimide derivatives and gives rise to extended fluorescence lifetimes in aqueous buffer. The photophysical properties of these systems are shown to be highly solvent-dependent. Screening the fluorescence responses of the new conjugates to a wide variety of metal ions reveals significant and selective fluorescence quenching in the presence of copper(II), yet no fluorescence enhancement with zinc(II) as observed previously for the simple naphthalimide derivatives. Reasons for this different behaviour are proposed. Cytotoxicity testing shows that these new cyclam-triazole-dye conjugates display little or no toxicity against either DLD-1 colon carcinoma cells or MDA-MB-231 breast carcinoma cells, suggesting a potential role for these and related systems in biological sensing applications.  相似文献   

15.
The synthesis, photophysical and photochemical properties of zinc and oxo-titanium phthalocyanine derivatives 4-(tetra[4-(thiophen-3yl)-phenoxy]phthalocyaninato)zinc(II), (2); and 4-(tetra[4-(thiophen-3yl)-phenoxy]phthalocyaninato)oxo-titanium(IV), (3), are described for the first time. These peripherally substituted complexes (2 and 3) have been synthesized and characterized by elemental analysis, IR, 1H NMR and electronic spectroscopy. The compounds (2 and 3) have good solubility in organic solvents such as CHCl3, DCM, DMSO, DMF, THF and toluene and are not aggregated within a wide concentration range. General trends are described for singlet oxygen, photodegradation, fluorescence quantum yields, triplet quantum yields and triplet life times of these complexes in DMSO, DMF and THF. Compound 2 has higher fluorescence quantum yields, triplet quantum yields and triplet life times than 3, however, the former has lower singlet oxygen quantum yields and photodegradation quantum yields than the latter.  相似文献   

16.
We synthesized various C8-naphthylethynylated 2′-deoxyadenosine derivatives and investigated their photophysical properties. Among them, cyano- and N,N-dimethylamino-substituted 8-naphthylethynylated 2′-deoxyadenosine derivatives (cnA and dnA) showed strong fluorescence with high quantum yields and a remarkable solvatofuorochromicity. In particular, fluorescence of N,N-dimethylamino-substituted 2,6dnA was not quenched by neighboring guanines (Gs) when incorporated in DNA duplexes, in contrast to cnA. We developed a new fluorescent probe containing 2,6dnA that can be used for the detection of target DNA via a bulge formation regardless of the neighboring sequences.  相似文献   

17.
To seek the new medicinal potential of sulfadiazine drug, the free amino group of sulfadiazine was exploited to obtain acyl/aryl thioureas using simple and straightforward protocol. Acyl/aryl thioureas are well recognized bioactive pharmacophore containing moieties. A new series (4a4j) of sulfadiazine derived acyl/aryl thioureas was synthesized and characterized through spectroscopic and elemental analysis. The synthesized derivatives 4a4j were subjected to calf intestinal alkaline phosphatase (CIAP) activity. The derivative 4a4j showed better inhibition potential compared to standard monopotassium phosphate (MKP). The compound 4c exhibited higher potential in the series with IC50 0.251?±?0.012?µM (standard KH2PO4 4.317?±?0.201?µM). Lineweaver-Burk plots revealed that most potent derivative 4c inhibition CIAP via mixed type pathway. Pharmacological investigations showed that synthesized compounds 4a4j obey Lipinsk’s rule. ADMET parameters evaluation predicted that these molecule show significant lead like properties with minimum possible toxicity and can serve as templates in drug designing. The synthetic compounds show none mutagenic and irritant behavior. Molecular docking analysis showed that compound 4c interacts with Asp273, His317 and Arg166 amino acid residues.  相似文献   

18.
Poly(p‐pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor–acceptor repeat units were synthesized by a Pd‐catalyzed Sonogashira coupling reaction between diethynyl monomer and di‐iodopyridine for use as a pH‐responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT‐IR, 1H and 13C NMR, UV–visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red‐shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Several biomolecules involved both in the metabolic processes and in the histological organization of cells and tissues are characterized by fluorescence properties that can be exploited to obtain information on the morpho-functional conditions of the biological substrate, suitable for diagnostic applications.An overview of the endogenous fluorophores responsible for the autofluorescence is given concerning the photophysical properties and their dependence on the evolution of the biological condition of cells and tissues.  相似文献   

20.
Over the past 15 years, fluorescence has become the dominant detection/sensing technology in medical diagnostics and biotechnology. Although fluorescence is a highly sensitive technique, where single molecules can readily be detected, there is still a drive for reduced detection limits. The detection of a fluorophore is usually limited by its quantum yield, autofluorescence of the samples and/or the photostability of the fluorophores; however, there has been a recent explosion in the use of metallic nanostructures to favorably modify the spectral properties of fluorophores and to alleviate some of these fluorophore photophysical constraints. The use of fluorophore-metal interactions has been termed radiative decay engineering, metal-enhanced fluorescence or surface-enhanced fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号