首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymine starvation of Escherichia coli K-12 results in greatly increased sensitivity to ultraviolet light (UV). Our studies, using isogenic strains carrying rec and uvr mutations, have shown the following. (i) Common to all strains tested is a change from multihit to single-hit kinetics of survival to UV after 60 min of thymine starvation. However, the limiting slope of UV survival curves decreases in the rec(+)uvr(+) strain and changes very little in several rec mutant strains and one uvrB mutant strain. Thus, when either the rec or uvr system is functioning alone, the limiting slopes of the UV survival curves are relatively unaffected by thymine starvation. (ii) Thymine starvation does not significantly inhibit repair processes carried out by either repair system alone; i.e., host cell reactivation of irradiated phage (carried out by the uvr system), excision of thymine dimers (uvr), or X-ray repair (rec). (iii) In a rec(+)uvr(+) strain, repair appears to be a synergistic rather than additive function of the two systems. However, after thymine starvation, repair capacity is reduced to about the sum of the repair capacities of the independent systems. (iv) The kinetics of thymineless death are not changed by rec and uvr mutations. This indicates that the lesions responsible for thymineless death are not repaired by rec or uvr systems. (v) Withholding thymine from thy rec(+)uvr(+) bacteria not undergoing thymineless death has no effect on UV sensitivity. Under these conditions one sees higher than normal UV resistance in the presence or absence of thymine. This is due to increased repair carried out by the uvr system. To explain these results we postulate that thymine starvation does not inhibit either the rec or uvr repair pathway directly. Rather it appears that thymine starvation results in increased UV sensitivity in part by inhibiting a function which normally carries out efficient coordination of rec and uvr pathways.  相似文献   

2.
Further characterization of a UV- and gamma-ray-sensitive mutant of Escherichia coli K-12 mutated in gene rer revealed that, as a result of this mutation: (1) neither bacterial capacity to excise thymine dimers from its DNA nor capacity to reactivate UV-irradiated phage lambda (Hcr+) was affected; (2) sensitivity to EMS and MC was increased; (3) WR of phage lambda was poor, whereas pre-irradiation growth of the mutant in MM only marginally restored WR; (4) the yield of UV-induced mutations was normal on MM, whereas on RM a decline below the spontaneous level was observed; and (5) induction of prophage by UV was not affected. The medium effect on UV sensitivity was largely post-irradiation. The rer recA double mutant was as UV sensitive as recA alone, and the media-dependent UV sensitivity exhibited by the rer strain disappeared in the double mutant. We provide further evidence to strengthen the earlier suggestion that rer might be involved in the control of replication of damaged DNA rather than participating directly in repair. It is further proposed that the rer+ gene is inducible and has a role in post-replication repair.  相似文献   

3.
The ultraviolet (UV) sensitivity of Escherichia coli B/r harvested at various times during growth in batch cultures was measured. The results showed a period of increased UV sensitivity in late log phase, just before the cultures entered stationary phase. This increase in sensitivity was associated with a decreased shoulder in the UV survival curves. The postirradiation division delay of survivors was shortest for cells harvested during the period of maximal sensitivity. This period of increased UV sensitivity during late log phase was not found in the radiation-sensitive, repair-deficient mutant B(s-1) (a strain which is unable to excise pyrimidine dimers from UV-damaged deoxyribonucleic acid). These results suggest that the variation in UV sensitivity of E. coli B/r as a function of time of harvesting of the cells from batch cultures is related to the varying capacities of these populations to repair UV-damaged deoxyribonucleic acid. Further experiments designed to elucidate the mechanism underlying this variation in UV sensitivity indicated that it arises from the partial depletion of nutrients in the medium during late log phase. We suggest that growth in such depleted media leads to a depression in the intercellular concentration or activity of one or more of the repair enzymes concerned with the repair of damaged deoxyribonucleic acid.  相似文献   

4.
We describe the characterization of a mutant strain of Streptococcus pneumoniae previously isolated on the basis of its sensitivity to Methyl Methane Sulphonate (MMS). The mutant strain also exhibited increased sensitivity to UV light and to X-rays, together with a reduced capacity for recombination and Hex-mediated generalized mismatch repair. We show that the original mutant contains two unlinked mutations in the mmsA and in the pms genes. The mmsA wild-type region was cloned and the nucleotide sequence of the mmsA gene was determined. mmsA encodes a polypeptide of 671 amino acids related to a large family of DNA–RNA helicases, with the highest similarity to Escheri-chia coli RecG, a protein involved in the branch migration of Holliday junctions. A plasmid carrying the intact mmsA coding region was shown to restore UV resistance to E. coli recG mutant strains. An mmsA -null mutant constructed by insertion of a chloramphenicol-resistance gene exhibited a 25-fold reduction in recombination during transformation. We suggest that MmsA recognizes and branch migrates three-strand transformation intermediates to extend donor–recipient heteroduplex regions. The mmsA -null mutant exhibited the other phenotypes of the original mutant, apart from mismatch-repair deficiency and, in addition, an alteration in colony-forming ability was noticed. In the pms mutant background, all phenotypes caused by the mmsA mutation were attenuated. Therefore, the pms mutation, although it affected mismatch repair and, to some extent, DNA repair and recombination, acted as a suppressor of the mmsA mutation.  相似文献   

5.
Escherichia coli ras locus: its involvement in radiation repair   总被引:5,自引:3,他引:2       下载免费PDF全文
There are several classes of Escherichia coli mutants defective in radiation repair. These include strains defective in pyrimidine dimer excision, in photoreactivation, in recombination, in repair of X-ray damage, and ultraviolet (UV)-conditional mutants which do not divide after UV. Another mutant (ras(-)) has been isolated. The ras(-) has increased UV sensitivity, but only slightly increased X-ray sensitivity (1.5-fold increase). Ability to effect genetic recombination, to reactivate irradiated bacteriophage T1, and to be photoreactivated is normal. UV-induced mutation frequency is greatly increased in the mutant. The ras(-) apparently lacks the ability to repair some UV damage in the bacterial cell but can repair UV damage to bacteriophage DNA. The ras locus is located between lac and purE on the chromosome map.  相似文献   

6.
The ssb-1 mutation confers severe temperature sensitivity and UV sensitivity on many strains of Escherichia coli K-12 and C, including strain C1412. However, ssb-1 confers only slight temperature sensitivity and slight UV sensitivity on strain C1a, suggesting that strain C1a contains extragenic suppressors of ssb-1. We found that introduction of the wild-type rep gene from C1a into strain C1412 ssb-1 gave strong suppression of temperature sensitivity and moderate suppression of UV sensitivity. Also, the C1a rep+ gene mildly suppressed the temperature sensitivity conferred by the ssb-113 mutation, formerly called lexC113. Suppression of the C1412 ssb-1 growth defect by C1a rep+ rendered the cells Gro- for phi X174. In contrast to the positive suppression of ssb-1 and ssb-113 by a wild-type rep gene, mutant rep alleles enhanced the severity of the ssb-1 defect, with several C1a ssb-1 double mutants being either more temperature sensitive or more UV sensitive than C1a ssb-1, depending on which mutant rep allele was used. As a control, the same rep alleles in combination with a dnaB mutation gave an allele-independent increase in temperature sensitivity. Our results on suppression of ssb-1 by rep and on the role of the genetic background in this suppression suggested that the rep and ssb proteins interact to form a subcomplex of the total DNA replication complex and that this subcomplex has some function in repair. The effects of NaCl and glucose on suppression of both the temperature sensitivity and the UV sensitivity conferred by ssb-1 and ssb-113 are described. The degree of suppression of temperature sensitivity by salt or glucose was dependent on the source of the wild-type rep allele, as well as on the genetic background.  相似文献   

7.
After UV irradiation, Escherichia coli uvrA mutant cells show higher survival on minimal than on rich growth medium, i.e., they show minimal-medium recovery. This effect of rich growth medium on survival is not observed in a uvrA mutant carrying an mmrA1 mutation, and the uvrA mmrA strain showed the same survival rate on minimal and rich growth media as the uvrA strain did on minimal medium plates. The mmrA1 mutation was isolated as a hidden mutation from a uvrA polA mutant strain and shown to map at 84.3 min on the E. coli K-12 linkage map. In contrast to the uvrA strain, the repair of DNA daughter strand gaps was not inhibited in the uvrA mmrA strain by rich growth medium after irradiation. However, the uvrA and uvrA mmrA strains were similar in their ability to repair DNA when compared in minimal medium. These data are consistent with the idea that the mmr gene product is not involved directly in the repair of UV radiation-induced DNA damage, but rather allows rich growth medium to inhibit a portion of postreplication repair.  相似文献   

8.
G Eitner 《Mutation research》1977,44(3):299-304
E. coli K-12 and its lambda-lysogenic derivative were used to study the influence of lysogenic induction on the induction of mutants (streptomycin sensitivity to streptomycin resistance) by UV irradiation. The lambda-lysogenic strain responded to UV irradiation with increased sensitivity and with a strong reduction of the absolute mutant quantity, recovered per UV dose, as compared with the non-lysogenic parental strain. However, similar mutant freqqencies per surviving bacterium exclude the possibility that the diminished mutant recovery results from a selective killing of mutant cells by simultaneous induction of the processes of mutation and lysis.  相似文献   

9.
Summary A UV-sensitive and a wild-type strain ofSaccharomyces cerevisiae have been compared with respect to their responses to photoreactivation, retention of the capacity to photoreactivate when stored at 32°C in buffer, and sensitivity to diepoxybutane and nitrosoguanidine. In all these tests the behaviour of the sensitive mutant paralleled bacterial strains lacking excision repair ability. We may tentatively attribute the UV sensitivity in this mutant to a loss of some element of a repair system analogous to excision repair in bacteria.  相似文献   

10.
The ras(-) mutant of Escherichia coli K-12 is sensitive to ultraviolet (UV) light but only slightly sensitive to X-irradiation (1.5-fold increase). Other phenotypic properties include normal recombination ability and normal host cell reactivation ability but an abnormally high frequency of UV-induced mutation. The response of the ras(-) mutant to UV has been studied biochemically. After low doses of UV, the ras(-) mutant degraded excessive amounts of deoxyribonucleic acid, and long delays in resumption of deoxyribonucleic acid synthesis occurred. Pyrimidine dimers were excised at the normal rate. Although the mutant had the capability of initiating repair replication, the process was not completed after the high UV dose required to allow detection of repair replication. The ras(-) mutant, after low UV doses, left three to four times as many single-strand breaks not rejoined as did the wild-type strain.  相似文献   

11.
It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.  相似文献   

12.
Escherichia coli K-12, polAl(-) is a mutant strain whose extracts are deficient in Kornberg deoxyribonucleic acid (DNA) polymerase activity. We have compared the mutant and parental strains on the basis of a number of responses to ultraviolet (UV) and X-irradiation. For both types of radiation, the mutant is more sensitive by approximately the same factor as measured by reduction in colony formation, depression of DNA synthesis, and enhancement of DNA degradation. The rate of repair of X-ray-induced single-strand breaks in the mutant is also slower, as is the repair of breaks after excision repair of UV damage. On the other hand, the mutant has a significant capability to reactivate UV-irradiated lambda phage, although it is almost totally deficient in the ability to carry out UV reactivation. The data indicate that the polAl mutation leaves the cells with some ability to perform excision and strand-rejoining repair but that an exonuclease, whose identity remains obscure, is the agent responsible for the extensive breakdown of the DNA in polAl(-) cells after irradiation.  相似文献   

13.
Characterization of a bacteriophage T4 mutant lacking DNA-dependent ATPase.   总被引:5,自引:1,他引:4  
A DNA-dependent ATPase has previously been purified from bacteriophage T4-infected Escherichia coli. A mutant phage strain lacking this enzyme has been isolated and characterized. Although the mutant strain produced no detectable DNA-dependent ATPase, growth properties were not affected. Burst sizes were similar for the mutant phage and T4D in polA1, recB, recC, uvrA, uvrB, uvrC, and various DNA-negative E. coli. UV sensitivity and genetic recombination were normal in a variety of E. coli hosts. Mapping data indicate that the genetic locus controlling the mutant occurs near gene 56. The nonessential nature of this gene is discussed.  相似文献   

14.
Two mutants at the pyr 1 locus have been used to study the radiation sensitivity of pyrimidine auxotrophs of U. maydis. The mutant pyr 1-1 has a reduced level of thymidine nucleotides, and this is a likely basis of the sensitivity. This strain is able to excise pyrimidine dimers from its DNA and is cross-sensitive to γ-rays and nitrosoguanidine (NG) as well as to UV. A diploid heteroallelic at the pyr 1 locus was UV-sensitive but not deficient in UV-induced mitotic recombination. The results suggest that the UV sensitivity may be due to the failure of a repair DNA polymerase to fill post-excision single-strand gaps in the DNA.The mutant pyr 1-1 exhibits the property of UV recovery, and this is shown to be dependent on the presence of dimers in the DNA. A mechanism for UV recovery is proposed in which a repair system, possibly involving recombination, is induced by the UV irradiation.  相似文献   

15.
A mutant of Escherichia coli which is more resistant to shortwave UV light than its wild-type parent strain and which can synthesise DNA polymerase I constitutively has been further analysed. It carries two mutational alleles which are located about 1.5 min apart and cotransducible by P1 with the argH locus. The two mutational alleles have been segregated and their analysis shows that one of them is responsible for UV hyper-resistance whereas the other mutation confers UV sensitivity. Recombinant plasmids carrying various sections of the polA regulatory region, linked to a galK gene, were introduced into the mutant strains. Analysis of galactokinase shows that the enzyme activity in the UV hyper-resistant mutant is increased. The results suggest that the synthesis of DNA polymerase I in E. coli is inducible.  相似文献   

16.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

17.
A cDNA expression library from a human cell line was introduced into an E. coli strain deficient in the repair of 3-meAde bases in DNA. E. coli strains deficient in the repair of 3-meAde are unusually sensitive to DNA methylating agents. A plasmid pANPG10 (Alkyl-N-Purine-DNA Glycosylase) was rescued from the library based on its ability to reduce the sensitivity of the mutant strain to methylmethane sulfonate. Crude extracts of the E. coli mutant strain hosting the plasmid pANPG10 release both 3-meAde and 7-meGua from DNA. The longest open reading frame in the sequence codes for a polypeptide of 230 amino acids of molecular weight 25.5 kD, with a pI of 9.1. The derived amino acid sequence of the human 3-meAde-DNA glycosylase has 85% sequence identity with the 3-meAde-DNA glycosylase from rat hepatoma cells.  相似文献   

18.
Neisseria gonorrhoeae lacks several common DNA repair pathways found in other organisms. As recent evidence had indicated that gonococci use recombinational repair to repair UV-induced DNA lesions, this study examined whether the gonococcal RecJ homologue contributes in this repair capacity. The recJ gene from strain MS11 was cloned and sequenced and was found to show a considerable degree of identity to its Escherichia coli homologue. A N. gonorrhoeae delta recJ mutant was constructed and tested for recombinational proficiency as well as for defects in DNA repair. In the absence of the RecJ exonuclease, DNA transformation and pilin switching occurred at wild type levels, indicating that the efficiency of recombination remained unimpaired. In contrast, N. gonorrhoeae delta recJ mutants showed extreme sensitivity to low levels of UV irradiation and to exposure to DNA-alkylating reagents [e.g. ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS)]. Complementation of the gonococcal recJ mutant in cis restored resistance to low-level UV, indicating that the gonococcal RecJ protein is involved in recombinational repair, and can act independently of other single-strand-specific exonucleases. Furthermore, transformation competence was not required for RecJ-dependent DNA repair. Overall, the data show that N. gonorrhoeae recJ mutants present a unique phenotype when compared to their E. coli recJ counterparts, and further support the contention that RecORJ-dependent recombinational repair is a major DNA repair pathway in the genus Neisseria.  相似文献   

19.
The uvrD252 mutation leads to increased UV sensitivity, diminished dimer excision and host cell reactivation capacity, and an increase in the average patch size after repair replication. A recA56 uvrD252 double mutant was far more resistant to UV than was a recA56 uvrB5 double mutant. Its host cell reactivation capacity was identical to that of uvrD252 single mutant and was far greater than that of the uvrB5 single mutant. The strain showed no Weigle reactivation. From these results, we concluded that the double mutant has no inducible DNA repair (including long-patch excision repair) but retains dimer excision capabilities comparable to the uvrD252 single mutant. It appears, therefore, that the long patches detected in the uvrD mutant were not identical to the recA-dependent patches seen in wild-type cells.  相似文献   

20.
The role of exonuclease III and endonuclease IV in the repair of pyrimidine dimers in bacteriophage T4-infected Escherichia coli was examined. UV-irradiated T4 showed reduced survival when plated on an xth nfo double mutant but showed wild-type survival on either single mutant. T4 denV phage were equally sensitive when plated on wild-type E. coli or an xth nfo double mutant, suggesting that these endonucleases function in the same repair pathway as T4 pyrimidine dimer-DNA glycosylase. A uvrA mutant of E. coli in which the repair of pyrimidine dimers was dependent on the T4 denV gene carried on a plasmid was constructed. Neither an xth nor an nfo derivative of this strain was more sensitive than the parental strain to UV irradiation. We were unable to construct a uvrA xth nfo triple mutant. In addition, T4, which turns off the host UvrABC excision nuclease, showed reduced plating efficiency on an xth nfo double mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号