首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specificity of cycloheximide in higher plant systems   总被引:40,自引:33,他引:7       下载免费PDF全文
Although cycloheximide is extremely inhibitory to protein synthesis in vivo in higher plants, the reported insensitivity of some plant ribosomes suggests that it may not invariably act at the ribosomal level. This suggestion is reinforced by results obtained with red beet storage tissue disks, the respiration of which is stimulated by cycloheximide at 1 microgram per milliliter. Inorganic ion uptake by these disks is inhibited by cycloheximide at 1 microgram per milliliter while the uptake of organic compounds, by comparison, is unaffected. Ion uptake by all nongreen tissues tested is inhibited by cycloheximide, but leaf tissue is unaffected, indicating that the ion absorption mechanism in the leaf may differ fundamentally from that in the root. It is concluded that cycloheximide can affect cellular metabolism other than by inhibiting protein synthesis and that the inhibition of ion uptake may be due to disruption of the energy supply.  相似文献   

2.
The time and dose dependence of the relationship between uptake of labelled precursors into protein and RNA and production of testosterone by rabbit follicles was examined. Although testosterone production was stimulated by luteinizing hormone at concentrations between 0.1 and 10 microgram/ml, the uptake of [3H]leucine into protein was significant only when the concentration of luteinizing hormone was greater than 2.5 microgram/ml. Increased production of testosterone was observed within 15 min of stimulation with luteinizing hormone whereas uptake of [3H]leucine was only significant at 90 min. Puromycin (40 microgram/ml) and cycloheximide (10 microgram/ml) in the presence of luteinizing hormone inhibited the synthesis of both testosterone and protein. However, lower concentrations of puromycin (0.1, 1 and 10 microgram/ml) and cycloheximide (1 microgram/ml) had no effect on luteinizing hormone-induced testosterone production but significantly inhibited protein synthesis by 58, 37, 31 and 71%, respectively. Actinomycin D (20, 80 and 160 microgram/ml) alone and in combination with 5 microgram luteinizing hormone/ml severely inhibited uptake of [3H]uridine into RNA without affecting testosterone production. However, with 1 microgram actinomycin/ml, testosterone production was significantly (P less than 0.01) greater than in the presence of luteinizing hormone alone. These results cast doubt on the obligatory role of RNA and protein synthesis in rabbit ovarian follicular steroidogenesis.  相似文献   

3.
5a,6-Anhydrotetracycline was discovered to be unique among several tetracycline derivatives tested in its ability to inhibit RNA accumulation in vivo at low concentration (20 microgram/ml and less). In addition, in vivo protein, DNA, and guanosine 5'-diphosphate 3'-diphosphate (ppGpp) synthesis were completely inhibited by 20 microgram/ml 5a,6-anhydrotetracycline. ppGpp decay in a spoT strain was inhibited by 20 microgram/ml 5a,6-anhydrotef RNA synthesis by a 5a,6-anhydrotetracycline may be due, in part, to reduced UTP and CTP synthesis. The effects of tetracyclines on in vitro ppGpp synthesis by crude stringent factor in the absence of ribosomes were investigated. It was determined that of six tetracyclines tested, four strongly inhibited the reaction (oxytetracycline, chlorotetracycline, dedimethylaminotetracycline, and tetracycline) whereas 5a,6-anhydrotetracycline gave a moderate inhibition and alpha-6-deoxyoxytetracycline resulted in only a slight reduction in ppGpp synthesis. It is proposed that tetracyclines interfere with factors involved in ppGpp metabolism and function.  相似文献   

4.
Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation "freeze" ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated with the natural clearance of translating ribosomes to avoid the dilemma of ribosome-polymerase collisions.  相似文献   

5.
Summary The effect of cycloheximide upon protein synthesis, RNA metabolism, and polyribosome stability was investigated in the parent and in two temperature-sensitive mutant yeast strains defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis. Cycloheximide at high concentrations (100 g/ml) severely inhibits but does not completely stop protein synthesis (Fig. 1); the incorporation of 14C-amino acids into polyribosome-associated nascent polypeptide chains continues at a slow but measurable rate (Figs. 2 and 3). Polyribosome structures are stable in the parent strain at 36° whether or not cycloheximide is present (Fig. 5). However, in Mutant ts- 136, a mutant defective in messenger as well as in stable RNA production, polyribosomes decay at the restrictive temperature (36° C) at the same rate whether or not cycloheximide is present (Fig. 5). Thus the maintenance of polyribosome structures is dependent upon the continued synthesis of messenger RNA even under conditions of extremely slow polypeptide chain elongation. In mutant ts- 187, a mutant defective in the initiation of polypeptide chains, all of the polyribosomes decay to monoribosomes within 2 minutes after a shift to the restrictive temperature; cycloheximide completely prevents this decay demonstrating that this mutant is capable of continued messenger RNA synthesis at 36° C. Consistent with these observations is the fact that a newly synthesized heterogeneously sedimenting RNA fraction continues to enter polyribosomes in the presence of cycloheximide whereas the entrance of newly synthesized ribosomal RNA is severely inhibited (Figs. 7, 8, 9). The decay or lack of decay of polyribosomes at the restrictive temperature is, therefore, a rapid and discriminating test for the analysis of mutants defective in macromolecule synthesis. Mutants which exhibit a decay of polyribosomes in the presence of cycloheximide are likely to be defective directly or indirectly in the synthesis of messenger RNA whereas mutants in which decay is prevented or slowed by cycloheximide are likely to be defective in some factor required for the association of ribosomes and messenger RNA.  相似文献   

6.
Low concentrations of a protein synthesis inhibitor, cycloheximide, were added throughout the process of in vitro differentiation of 11-day old embryonic chick lens cells. We found with low concentrations of cycloheximide (0.01 to 0.03 microgram/ml, 3 days of culture), that there was an almost complete delay of DNA degradation as observed on alkaline sucrose gradient. Identical concentrations and exposure time had no blocking effect on increased delta-crystallin synthesis as detected by immunoprecipitation and electrophoresis. Higher concentrations of cycloheximide (0.1 to 1 microgram/ml) showed a marked effect on DNA size and a net inhibition on delta-crystallin synthesis. Thus a selective effect of low doses of cycloheximide was observed on terminal differentiation suggesting that there was not a relationship between DNA degradation and delta-crystallin synthesis in these short term experiments. The investigations of minor proteins could be of interest as they may have a crucial role in intact nuclei cataracts.  相似文献   

7.
Cycloheximide at concentrations of 0.1-100mum stimulated chlorophyll synthesis when dark-grown cells of Euglena were illuminated. Chloramphenicol (1-4mm) inhibited chlorophyll synthesis. The effect of cycloheximide on the incorporation of [(14)C]leucine into material insoluble in trichloroacetic acid, and its failure to affect the incorporation of [(32)P]orthophosphate into such material in short incubations, are interpreted as evidence that cycloheximide specifically inhibits protein synthesis by 80S ribosomes. Since the inhibitory effect of chloramphenicol on chlorophyll synthesis is counteracted by the presence of cycloheximide, it is suggested that chlorophyll synthesis is subject to control by a cytoplasmic repressor synthesized on 80S ribosomes, and to a de-repressor synthesized on 70S ribosomes.  相似文献   

8.
The rate of protein synthesis in HeLa cells appears to be regulated, in part, by a factor which promotes the association of ribosomes with messenger RNA and whose production is inhibited by actinomycin. The decline in protein synthesis after the administration of actinomycin is not primarily due to a decay of available messenger RNA but, rather, is a result of a decrease in the rate of ribosomal association with message.The decay of protein synthesis in actinomycin can be varied over a wide range by altering the temperature of cell incubation. Thus the half-life of protein synthesis decay ranges from eight hours at 34 °C to two hours at 41°C. The rapid decline of protein synthesis at 41 °C is not accompanied by a corresponding decay of the messenger RNA. Polyribosomes decrease in size, but they can be restored to normal sedimentation distributions by low levels of cycloheximide, suggesting that messenger RNA remains functional. The translation rate at 41 °C is unaltered. The dose-response of protein synthesis inhibition by actinomycin was measured and a half-maximum inhibition was found to be effected by 0·1 μg of the drug/ml.Another important aspect of the regulation of translation in HeLa cells is the response of cells to depressed rates of protein synthesis. At 42 °C, protein synthesis is severely inhibited, due to a failure in the association of ribosomes with messenger RNA. Prolonged incubation at the elevated temperature results in a significant repair of the lesion. This repair is inhibited by actinomycin. The half-maximum inhibition is achieved at levels of from 0·05 to 0·1 μg of the drug/ml.The cell response to depressed rates of protein synthesis can also be demonstrated using the drug cycloheximide. Prolonged incubation in the drug results in a response which then can promote protein synthesis at 42 °C. Here again, the half-maximum inhibition of the response to cyclohemixide is achieved by 0·1 μg of actinomycin/ml. These experiments suggest, but do not prove, that the cellular response may be mediated through the synthesis of RNA that promotes the initiation of translation and does not involve the subsequent production of protein.  相似文献   

9.
Slow cooling of fertilized chicken eggs permits the elongation and termination of nascent polypeptides in the polysomes but prevents the initiation of new protein chains. This leads to polysome disaggregation during the first 30 min of cooling, and to the formation, of a pool of inactive ribosomes prone to crystallization. After 2 hr these ribosomes began to form tetramers, which do not contain any labeled proteins synthesized during cooling. If protein synthesis is inhibited by cycloheximide, added to eggs before cooling, tetramer formation in the embryos is prevented. Puromycin, on the other hand, leads to polysome disassembly and does not prevent tetramer formation. Rapid cooling of explanted embryos after short incubation at 37°C, with or without cycloheximide, largely prevents polysome disaggregation and the formation of tetramers. On the other hand, the addition of puromycin to explanted embryos promotes tetramer formation after rapid cooling. When cooled eggs are rewarmed, tetramers are disassembled into monomers, even if protein synthesis is inhibited. When those embryos were rapidly recooled tetramers reformed spontaneously from tetramer-derived monomers, even in the presence of cycloheximide. We conclude that the formation of tetramers at low temperature is an inherent property of the normal ribosomes.  相似文献   

10.
The capacity of the human monocyte cell line U-937 to synthesize complement factor H was examined. The kinetics of secretion of factor H into cell culture supernatant were followed by a sensitive solid phase RIA capable of measuring 0.1 ng of protein. Daily secretion of factor H was low and almost linear and was approximately 3 ng of factor H per 10(6) cells. Factor H synthesis was inhibited by cycloheximide but returned to the levels seen in untreated cultures after removal of the inhibitor. LPS and IL-1 both effected a time- and dose-dependent enhancement of factor H synthesis. Induction of U-937 cells with PMA to differentiate into macrophage-like cells also resulted in increased factor H synthesis. RIA of cell lysates, immunofluorescence microscopy, as well as FACS analysis all revealed that factor H Ag was also associated with the U-937 cell membrane. The population of U-937 cells bearing membrane-associated factor H was decreased from 77 to 43% after stimulation for 48 h with LPS (1 microgram/ml). [35S]Methionine metabolic labeling and SDS-PAGE analysis of factor H immunoprecipitates from unstimulated and stimulated culture supernatants and cell lysates demonstrated a major polypeptide, m.w. 150,000, and a minor component, m.w. 42,000. Western blot analysis of factor H in fresh normal plasma also detected both 150,000 and 42,000 m.w. factor H proteins. This is in agreement with the recent demonstration of a 4.4- and 1.8-kb mRNA for factor H in human liver. These data demonstrate that U-937 cells synthesize factor H that is structurally and antigenically similar to factor H in normal plasma. The exact nature of the membrane-bound factor H and its functions and mechanism of attachment to the cell membrane remain to be elucidated.  相似文献   

11.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F1 alpha. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 microgram/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 microgram/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolases are independently regulated.  相似文献   

12.
G-418, an elongation inhibitor of 80 S ribosomes   总被引:4,自引:0,他引:4  
The mode of action of the aminoglycoside G-418 was studied in wheat-germ, cell-free translation systems programmed with rat-liver polyadenylated RNA. Incorporation of amino acids into protein was effectively inhibited by G-418 in the microM concentration range. The inhibition pattern obtained was not uniform. The synthesis of polypeptides with higher molecular weights was more inhibited than that of smaller polypeptides. An identical inhibition pattern within a similar range of concentrations was obtained with cycloheximide, a known elongation inhibitor. Translation activity was abolished when the wheat-germ 80 S ribosomes were removed and could be partially reconstructed upon addition of the ribosomes. Incubation with G-418 prior to isolation yielded ribosomes defective in their reconstruction ability. The inhibition pattern was not uniform and exhibited again the same relationship between the size of a polypeptide and the extent of inhibition of its synthesis. Therefore, we suggest that in wheat-germ, cell-free translation systems G-418 affects the 80 S ribosomes and inhibits the elongation cycle.  相似文献   

13.
The chloroplast protein synthesis factor responsible for the translocation step of polypeptide synthesis on chloroplast ribosomes (chloroplast elongation factor G [EF-G]) has been detected in whole cell extracts and in isolated chloroplasts from Euglena gracilis. This factor can be detected by its ability to catalyze translocation on 70 S prokaryotic ribosomes such as those from E. coli. Chloroplast EF-G is present in low levels when Euglena is grown in the dark and can be induced more than 20-fold when the organism is grown in the light. The induction of this factor by light is inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. However, inhibitors of chloroplast protein synthesis such as streptomycin or spectinomycin have no effect on the induction of this factor by light. Furthermore, chloroplast EF-G can be partially induced by light in an aplastidic mutant (strain W3BUL) which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-G resides in the nuclear genome, and that this protein is synthesized on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts.  相似文献   

14.
We have previously reported that marked enhancement of the in vitro binding of lymphocytes to endothelial cell (EC) monolayers is observed after stimulation of the EC with interleukin 1 (IL 1). To determine whether new protein synthesis was required for this effect of IL 1, EC were incubated with IL 1 in the presence of cycloheximide or puromycin. Three different effects of these protein synthesis inhibitors on T-EC binding were observed. First, preincubation of the EC with both IL 1 and an inhibitor blocked the increase in binding if the inhibitor was present during both the preincubation and the 1 hr duration of the T-EC binding assay, suggesting that new protein synthesis is required for the enhancement of T-EC adhesion by IL 1. Second, preincubation of the EC with low doses of the inhibitors (0.1 to 1 microgram/ml) in the absence of IL 1 consistently increased T-EC binding, even if the inhibitors were present during the T-EC adhesion assay; in addition, the inhibitors additionally increased the stimulatory effect of IL 1 if the EC were washed free of the inhibitor before the assay step. The binding-enhancing effect of low concentrations of cycloheximide could be inhibited by an antibody to the CDw18 complex on the T cell, suggesting an up-regulation of the ligand on the EC involved in CDw18-dependent T cell adhesion. Third, higher concentrations of the inhibitors (3 to 10 micrograms/ml) were toxic for the EC in the presence of IL 1, possibly due to the combined blocking effect of IL 1 and inhibitors on EC protein synthesis.  相似文献   

15.
Effects of aurinetricarbonic acid and cycloheximide on kinetics of polypeptide chain synthesis and polyribosome protile in mouse liver cell in vivo are studied. Both compounds are found to decrease the absolute rate of protein synthesis and to increase the time of polypeptide synthesis. Cycloheximide changed the ratio of translating and non-translating ribosomes and different in size polyribosome types. Aurinetricarbonic acid exerts no effect on polyribosome profile. Effects of cycloheximide and aurinetricarbonic acid on kinetic parameters of translation and a mechanism of action of these compounds are studied.  相似文献   

16.
The effects of two different protein synthesis inhibitors (cycloheximide and puromycin) on the ovulatory process were examined in vitro using a perfused rat ovary model. Ovaries of PMSG (20 i.u.)-primed rats were perfused for 21 h. Release of cyclic adenosine 3',5'-monophosphate (cAMP) and steroids (progesterone, testosterone, and oestradiol) was measured and the number of ovulations was estimated by counting released oocytes. Unstimulated control ovaries did not ovulate whereas addition of LH (0.1 microgram/ml) plus 3-isobutyl-1-methylxanthine (IBMX; 0.2 mM) resulted in 16.7 +/- 3.5 ovulations per treated ovary. Cycloheximide (5 micrograms/ml) totally inhibited the ovulatory effect of LH + IBMX when present from the beginning of the perfusions and also when added 8 h after LH + IBMX. No inhibition was seen when cycloheximide was added 10 h after LH + IBMX (1-1.5 h before the first ovulation; 15.2 +/- 4.4 ovulations per treated ovary). Puromycin (200 micrograms/ml) completely blocked ovulation when present from the beginning of the perfusions and the inhibition was congruent to 60% (6.5 +/- 2.2 ovulations per treated ovary) when the compound was added 8 h after LH + IBMX. Both inhibitors increased LH + IBMX-stimulated cAMP release substantially, but decreased the release of progesterone, testosterone and oestradiol. These results indicate that de-novo protein synthesis is important late in the ovulatory process for follicular rupture to occur.  相似文献   

17.
In resting cells of Cephalosporium acremonium CW19, protein synthesis was inhibited completely by 100 μg cycloheximide per ml. Furthermore, ongoing protein synthesis halted abruptly when cycloheximide was added after 20 min of incubation. Although cycloheximide did not affect the specific rate of penicillin N production, it markedly inhibited the specific rate of cephalosporin C production. The effect of cycloheximide was not influenced by the carbon source used to prepare the cells for the resting cell system.  相似文献   

18.
Inhibition of protein synthesis by puromycin (100 γ/ml) is known to inhibit the synthesis of ribosomes. However, ribosomal precursor RNA (45S) continues to be synthesized, methylated, and processed. Cell fractionation studies revealed that, although the initial processing (45S → 32S + 16S) occurs in the presence of puromycin, the 16S moiety is immediately degraded. No species of ribosomal RNA can be found to have emerged from the nucleolus. The RNA formed in the presence of puromycin is normal as judged by its ability to enter new ribosomal particles after puromycin is removed. This sequence of events is not a result of inhibition of protein synthesis, for cycloheximide, another inhibitor of protein synthesis, either alone or in combination with puromycin allows the completion of new ribosomes.  相似文献   

19.
Serum-deprived (0.1-0.2%) resting NIH 3T3 mouse fibroblasts pre-incubated with cycloheximide (7.5 micrograms/ml), or puromycin (10 micrograms/ml), were fused with stimulated cells taken 10 h after changing the medium to one containing 10% serum, and DNA synthesis was investigated in the nuclei of monokaryons, homodikaryons and heterodikaryons using radioautography with the double-labelling technique. Pre-incubation of resting cells with inhibitors of protein synthesis for 1-4 h abolished their ability to suppress DNA synthesis in stimulated nuclei in heterokaryons. Three hours after the removal of cycloheximide from the medium, the resting cells acquired once again the inhibitory capacity for entry of stimulated nuclei into the S period. This inhibitory influence disappeared also in the case of post-fusion cycloheximide application as well as following an 8-12 h pre-treatment of resting cells with actinomycin D (1 microgram/ml) prior to fusion. Pre-incubation of resting cells for 12 h with PDGF (1 u/ml-1) followed by an 8-48 h incubation in serum-free medium stimulated the onset of DNA synthesis. A brief exposure (45 min) of resting cells to cycloheximide (7.5 micrograms/ml), or puromycin (7.5 micrograms/ml), exerted a similar effect, inducing by itself the entry of cells into the S period. The results support the assumption that acquirement, by resting cells, of competence for DNA replication includes as a necessary step the down-regulation of intracellular growth inhibitors whose formation depends on protein synthesis.  相似文献   

20.
Nuclear extract of human erythroleukemic cell line K562 contains a 70 kDa protein which is gradually reduced when cells are induced to express globin genes by 25 microM hemin. When globin synthesis was inhibited by cycloheximide (100 micrograms/ml) or Actinomycin D (1 microgram/ml), the disappearance of this protein was prevented. The 70 kDa nuclear protein exhibited strong binding to G gamma and A gamma globin promoters but not to beta-globin promoter. This suggests that this 70 kDa nuclear protein may be involved in the regulation of fetal globin gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号