首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 μg/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 μg/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolyses are independently regulated.  相似文献   

2.
Macrophages isolated from the peritoneal cavity of untreated mice and maintained in tissue culture synthesize and release prostaglandins when challenged with zymosan. These cells also selectively release lysosomal acid hydrolases under the same conditions. The major prostaglandins released into the media are found to be prostaglandins E1, E2 and 6-oxoprostaglandin F1a, whereas prostaglandin F2a is not detected. Macrophages isolated from mice that have received an intraperitoneal injection of thioglycollate broth are far less responsive to zymosan challenge. These cells require 300 microgram of zymosan to synthesize and release one-third the amount of prostaglandins released from non-stimulated macrophages exposed to 50 microgram of zymosan. In addition, thioglycollate-stimulated macrophages release less than 10% of their lysosomal acid hydrolases when exposed to 300 microgram of zymosan whereas non-stimulated cells release approximately 50% of these enzymes after treatment with 50 microgram of zymosan. The zymosan-stimulated synthesis and release of prostaglandins are completely inhibited by indomethacin, whereas the increased selective release of lysosomal acid hydrolases is not affected. Macrophages, unlike fibroblasts, do not synthesize and release prostaglandins when exposed to serum or to bradykinin.  相似文献   

3.
The phospholipids of rabbit alveolar macrophages were pulse-labelled with [(14)C]-arachidonic acid, and the subsequent release of labelled prostaglandins was measured. Resting macrophages released measurable amounts of arachidonic acid, the prostaglandins E(2), D(2) and F(2alpha) and 6-oxoprostaglandin F(1alpha). Phagocytosis of zymosan increased the release of arachidonic acid and prostaglandins to 2.5 times the control value. In contrast, phagocytosis of inert latex particles had no effect on prostaglandin release. Indomethacin inhibited the release of prostaglandin, and, at high doses (20mug/ml), increased arachidonic acid release. Analysis of the cellular lipids showed that after zymosan stimulation the proportion of label was decreased in phosphatidylcholine, but not in other phospholipids or neutral lipids. Cytochalasin B, at a dose of 2mug/ml, inhibited the phagocytosis induced by zymosan but increased prostaglandin synthesis to 3.4 times the control. These data suggest that the stimulation of prostaglandin synthesis by zymosan is not dependent on phagocytosis. Exposure to zymosan also resulted in the release of the lysosomal enzyme, acid phosphatase. Furthermore, cytochalasin B augmented the zymosan-stimulated release of acid phosphatase at the same dose that stimulated prostaglandin synthesis. However, indomethacin, at a dose that completely inhibited prostaglandin synthesis, failed to block the lysosomal enzyme release. Thus despite some parallels between the release of prostaglandins and lysosomal enzymes, endogenous prostaglandins do not appear to mediate the release of lysosomal enzymes. The prostaglandins released from the macrophages may function as humoral substances affecting other cells.  相似文献   

4.
The release of the prostaglandins E2 and D2, induced by zymosan and phorbol ester in cultured rat Kupffer cells, was found to depend on the extracellular concentration of Na+. Eicosanoid formation following the administration of the Ca2+ ionophore A23187 or of arachidonic acid, however, did not require the presence of sodium ions in the medium. A half-maximal rate of prostaglandin release by zymosan-treated Kupffer cells was obtained between 4 mM and 5 mM Na+; and a Na+ concentration of greater than or equal to 30 mM was required to maximally stimulate prostaglandin E2 and D2 formation in the cultured liver macrophages. In contrast, the superoxide production following the administration of zymosan or of phorbol ester was quite independent of extracellular Na+. The zymosan and phorbol-ester-stimulated release of prostaglandins E2 and D2 was inhibited by amiloride. Artificial intracellular alkalization enhanced the prostanoid production of unstimulated and of zymosan-stimulated cells whereas artificial intracellular acidification inhibited the zymosan-elicited prostaglandin synthesis. In contrast, the superoxide formation was independent of the pH changes. The data presented here suggest that the prostaglandin production elicited by zymosan or phorbol ester in cultured rat Kupffer cells requires an activated Na+/H+ exchange.  相似文献   

5.
The present investigation was undertaken to study the potential role of intracellular calcium on the release of arachidonic acid from mouse peritoneal macrophages activated by inflammatory stimuli. The intracellular calcium concentration, as measured using fluorescent probe Quin-2, was 112 +/- 8.4 nM. The chelation of intracellular calcium with Quin-2 did not affect the release of arachidonic acid from macrophages upon stimulation with phorbol myristate acetate, opsonized zymosan or calcium ionophore A23187. However, the removal of calcium from the extracellular medium resulted in a 30-50% decrease in arachidonic acid release from phorbol myristate acetate- and zymosan-stimulated macrophages and also the stimulation of arachidonic acid release from calcium ionophore-stimulated cells were nullified. These studies indicated the existence of calcium-dependent and independent mechanisms modulating the release of arachidonic acid from macrophages subjected to inflammatory stimuli.  相似文献   

6.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases.  相似文献   

7.
Alpha-fetoprotein stimulates leukotriene synthesis in P388D1 macrophages   总被引:1,自引:0,他引:1  
Alpha-fetoprotein (AFP) is able to bind specifically polyunsaturated fatty acids, especially arachidonic acid, the major precursor for prostaglandin and leukotriene synthesis. In P388D1 macrophages, AFP was found to reduce prostaglandin synthesis. This reduced synthesis was counter-balanced by a higher release of unmetabolized arachidonic acid and an enhanced production of leukotrienes. The same results were obtained with unactivated and activated cells irrespective of the activator used: lipopolysaccharide, Ca2+ ionophore A23187, phorbol myristate acetate, interferon-gamma, silica, or zymozan particles. The stimulation of leukotriene synthesis by AFP in macrophages thus appears to be a possible mechanism for the in vitro immunosuppressive effects of this oncofetal protein.  相似文献   

8.
The effects of phorbol myristate acetate, an activator of protein kinase C, on the release of [3H]arachidonic acid and prostaglandin synthesis were studied in an osteoblast cell line (MC3T3-E1). Phorbol myristate acetate (20 uM) liberated 16 and 55% of the [3H]arachidonate in prelabeled phosphatidylinositol and phosphatidylethanolamine, respectively, and evoked a 19-fold stimulation in the synthesis of prostaglandin E2. Phorbol myristate acetate doubled the cellular mass of 1,2-diacylglycerol and stimulated the liberation of [3H]arachidonate from the diacylglycerol pool in prelabeled cells. The diacylglycerol lipase inhibitor RHC 80267 blocked 75–80% of the phorbol ester-promoted (total) cellular liberation of [3H]arachidonic acid and production of prostaglandin E2. In comparison, the release of [3H]arachidonate from phosphatidylethanolamine (but not phosphatidylinositol) was only partially antagonized (to the same degree) by the PLA2 inhibitor p-bromophenacylbromide and the protein kinase C inhibitor Et-18-OMe. PMA-induced formation of diacylglycerol or synthesis of PGE2 was not affected by the prior inhibition of protein kinase C. Therefore, we have shown a novel pathway for the liberation of arachidonic acid in osteoblasts involving the nonspecific hydrolysis of phosphatidylinositol and phosphatidylethanolamine by phospholipase C followed by the deesterification of diacylgycerol. This pathway can be activated by a phorbol ester through a protein kinase C-independent mechanism.  相似文献   

9.
Studies were undertaken to elucidate the active component in zymosan necessary to induce the delayed-onset synthesis and secretion of representative lysosomal hydrolases, hexosaminidase, and beta-glucuronidase in macrophages. Resident mouse peritoneal macrophages were challenged with zymosan particles and particulate beta-1,3-glucan, the major subcomponent of zymosan. Zymosan was found to induce a rapid secretion of preformed hexosaminidase with maximal release (75%) occurring 6 hr after the addition of zymosan. By contrast, beta-1,3-glucan was totally inactive in this respect. However, both zymosan and beta-1,3-glucan were found to induce the delayed-onset synthesis and secretion of hexosaminidase and beta-glucuronidase while maintaining constant cellular enzyme levels over a 5-day period following the addition of stimulus. These late responses were almost totally blocked by a noncytolytic concentration of cycloheximide, indicating their dependence on de novo protein synthesis. Mannan, the second major subcomponent of zymosan, had no effect on either immediate secretion or delayed-onset synthesis and secretion of hexosaminidase. These results suggest that the induction of the delayed-onset synthesis and secretion of the lysosomal hydrolases by zymosan may be dependent on the glucan subcomponent of zymosan. Moreover, it would also appear that the release of preformed lysosomal enzymes is not the trigger for the delayed-onset synthesis and secretion of hexosaminidase.  相似文献   

10.
11.
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.  相似文献   

12.
The regulation of arachidonic acid conversion by the 5-lipoxygenase and the cyclooxygenase pathways in mouse peritoneal macrophages has been studied using particulate and soluble agonists. Particulate agonists, zymosan and latex, stimulated the production of cyclooxygenase metabolites as well as the 5-lipoxygenase product, leukotriene C4. In contrast, incubation with the soluble agonist phorbol myristate acetate or exogenous arachidonic acid led to the production of cyclooxygenase metabolites but not leukotriene C4. We tested the hypothesis that the 5-lipoxygenase, unlike the cyclooxygenase, requires activation by calcium before arachidonic acid can be utilized as a substrate. Addition of phorbol myristate acetate to macrophages in the presence of calcium ionophore (A23187) at a concentration which alone did not stimulate arachidonate metabolism resulted in a synergistic increase (50-fold) in leukotriene C4 synthesis compared to phorbol ester or A23187 alone. No such effect on the cyclooxygenase pathway metabolism was observed. Exogenous arachidonic acid in the presence of A23187 produced similar results yielding a 10-fold greater synthesis of leukotriene C4 over either substance alone without any effects on the cyclooxygenase metabolites. Presumably, calcium ionophore unmasked the synthesis of leukotriene C4 from phorbol myristate acetate-released and exogenous arachidonate by elevating intracellular calcium levels enough for 5-lipoxygenase activation. These data indicate that once arachidonic acid is released from phospholipid by an agonist, it is available for conversion by both enzymatic pathways. However, leukotriene synthesis may not occur unless intracellular calcium levels are elevated either by phagocytosis of particulate agonists or with calcium ionophore.  相似文献   

13.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

14.
This study evaluates the role of inositol phosphates as possible mediators of the activation of phospholipase A2 and NADPH oxidase in cultured rat liver macrophages. Inositol phosphate formation was achieved by zymosan, immune complexes, latex particles and calcium ionophore while the release of arachidonic acid and the formation of prostaglandin E2 was also elicited by phorbol ester and NaF, but not by latex particles; generation of superoxide was obtained by zymosan and phorbol ester only. The kinetics of the formation of inositol phosphates revealed that within the first few minutes after zymosan addition inositol trisphosphate was formed, followed by inositol bisphosphate and inositol monophosphate. Pre-treatment of the cells with dexamethasone or removal of extracellular calcium led to an inhibition of the zymosan-induced formation of inositol phosphates and prostaglandin E2 but had no effect on the generation of superoxide; inhibition of the Na+/H+ exchanger by removal of extracellular sodium ions led to a decrease of the zymosan-induced synthesis of prostaglandin E2, but did not affect the formation of inositol phosphates and superoxide. Pre-treatment of the cells with phorbol ester decreased the zymosan-induced synthesis of prostaglandin E2 and superoxide, but even enhanced the zymosan-induced formation of inositol phosphates. These data indicate that in cultured rat liver macrophages the formation of prostaglandins and superoxide cannot be correlated to an activation of phospholipase C.  相似文献   

15.
Macrophages release a variety of arachidonic acid metabolites after treatment with various membrane triggers or particulate stimuli. We examined the role of phospholipase and lipoxygenase inhibitors in the modulation of superoxide production and tumor cytolysis by murine macrophages. Superoxide was induced by the soluble stimulus, phorbol myristate acetate (PMA), and the particulate stimulus, opsonized zymosan, and was measured by the reduction of ferricytochrome c with the use of a micro ELISA reader. Macrophage-mediated tumor cytolysis was induced by hybridoma-derived, macrophage-activating factor (MAF) and was quantitated by 51Cr release from P815 target cells. In both assays, 72-hr peptone-elicited macrophages were used. Dexamethasone, and to a lesser degree hydrocortisone, inhibited superoxide release and MAF-induced tumor cytolysis. Inhibition in the superoxide assay required pretreatment with corticosteroid. Only the gold compound, auranofin, inhibited superoxide when given simultaneously with stimulant. Other phospholipase inhibitors, including mepacrine and 4-bromophenacyl bromide, and several lipoxygenase inhibitors, including BW755c, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), failed to modulate either macrophage response at nontoxic concentrations. At the concentrations tested in the tumoricidal and superoxide assays, mepacrine and 4-bromophenacyl bromide inhibited the release of 14C-arachidonic acid from macrophages stimulated with opsonized zymosan. Our data strongly suggest that corticosteroids suppress macrophage superoxide production and tumoricidal function by a nonphospholipase-dependent mechanism.  相似文献   

16.
15(S)-15-methyl-prostaglandin E1 and prostaglandin I2 rapidly and reversibly inhibit formyl-methionyl-leucyl-phenylalanine induced superoxide production by human neutrophils. In contrast, 15(S)-15-methyl-prostaglandin E1 and prostaglandin I2 did not alter the rate or the total amount of superoxide production by human neutrophils stimulated with either phorbol myristate acetate or arachidonic acid. These data suggest that the production of superoxide anion by human neutrophils may be mediated by at least two mechanisms, one regulated by prostaglandins and intracellular cyclic adenosine monophosphate levels and a second independent of prostaglandin modulation.  相似文献   

17.
Antigen-antibody complexes (Ag/Ab) formed at equivalence stimulate the release of arachidonic acid and synthesis of prostaglandin E2 and 6-keto-prostaglandin F by resident mouse peritoneal macrophages. Prostaglandin synthesis and secretion is stimulated by submicrogram quantities of Ag/Ab which increases in a dose-dependent manner. This release is time-dependent and occurs in the absence of any loss of cell viability as indicated by increased cellular levels of lactate dehydrogenase without concomitant loss of this activity to the media and the continued secretion of a constitutive cellular product, lysozyme. The stimulated synthesis of prostaglandins by Ag/Ab is inhibited by indomethacin and physiological levels of antiinflammatory glucocorticoids.  相似文献   

18.
A calcium-dependent phospholipase A2 with half-maximal activity at approx. 0.7 microM free Ca2+ has been identified in the cytosolic fraction from macrophages. The enzyme eluted as a 70 kDa protein upon gel chromatography and showed increased activity after 10 min pretreatment of the cells with 10 nM phorbol myristate acetate. No significant activity could be detected in the membrane fraction. The enzyme hydrolyzed arachidonic acid-containing phosphatidylcholine and -ethanolamine as well as phosphatidylinositol. The release of arachidonic acid in the in vitro assay was inhibited in a dose-dependent manner by nordihydroguaiaretic acid and quercetin that are also potent inhibitors of the mobilization of arachidonic acid in intact macrophages.  相似文献   

19.
1,2-Dioctanoyl-sn-glycerol (2-50 microM) was found, like phorbol myristate acetate (greater than or equal to 3 nM) to stimulate phospholipase A-type cleavage of phosphatidylinositol and the release of arachidonic acid from macrophage phospholipids. The 1,3 isomer of dioctanoylglycerol was inactive, whereas racemic 1,2-dioctanoylglycerol was half as potent as the 1,2-sn enantiomer. Dioctanoylglycerol-induced deacylation of phosphatidylinositol was only partly dependent on extracellular calcium but was more severely inhibited by depletion of intracellular calcium. Chlorpromazine inhibited the deacylation of phosphatidylinositol, whereas inhibitors of cyclo-oxygenase and lipoxygenase were ineffective. Since both phorbol myristate acetate and 1,2-dioctanoyl-sn-glycerol are known to activate protein kinase C, the results suggest that this kinase is involved in the sequence of events leading to release of arachidonic acid in macrophages.  相似文献   

20.
Inositol phospholipid degradation and release of phospholipid-bound arachidonic acid was induced in intact peritoneal macrophages by exposure to phorbol myristate acetate (PMA) or zymosan particles. PMA, known to activate protein kinase C, selectively enhanced the deacylation of phosphatidylinositol (i.e., degradation by phospholipase A), while zymosan particles enhanced degradation via both phospholipase A and inositol lipid phosphodiesterase (phospholipase C). The release of arachidonic acid was found to correlate with the degradation of phosphatidylinositol by the phospholipase A pathway and could be dissociated from the phospholipase C-catalyzed cleavage of inositol phospholipids in several experimental situations: (i) when PMA was the stimulus, (ii) by the difference in Ca2+ dependence between the two enzymatic processes when zymosan was the stimulus and (iii) by the parallel inhibition by chlorpromazine of the phospholipase A pathway and arachidonic acid release, but not inositol phospholipid phosphodiesterase. In addition, phloretin, a reported inhibitor of protein kinase C, was found to inhibit arachidonic acid release and the deacylation of phosphatidylinositol. The results are consistent with a model in which arachidonic acid release is mediated by phospholipase(s) A and in which PMA or the phosphodiesterase-catalyzed degradation of phosphoinositides causes activation of the phospholipase A pathway via protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号