首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary Electromyograms were recorded from leg muscles of the cockroachGromphadorhina during walking and righting under free-ranging and tethered conditions. Two muscles which are essentially synergistic during walking become antagonistic during righting (Fig. 3, 4). This explains in part the difference in the direction of the leg stroke in the two behaviors (Fig. 2). Other properties of the muscle activity are very similar during the two rhythms: the same motoneurons appear to be active (Fig. 5, 6); cycle frequencies are the same; the burst length of one motoneuron studied varies with burst frequency in a generally similar manner in both behaviors (Fig. 7); inter-leg coordination is the same (Fig. 9); and transganglionic coupling characteristic of walking can occur while a leg on one side is engaged in walking, and its contralateral homologue is engaged in righting (Fig. 10). Although other properties of the leg rhythms are different in walking and righting, these differences appear to result from dissimilarities in sensory feedback. It is concluded that although the two leg rhythms are superficially quite different, the underlying central neuronal rhythms are very similar, and possibly result from activity in the same central oscillatory cell or circuit.We thank Carol Smith for technical assistance. This work was supported by NIH grant #NS09083-05. Computation was done at the New York State Veterinary College Computer Facility which is supported by NIH grant RR 326.  相似文献   

2.
The coupling mechanisms which coordinate the movement of ipsilateral walking legs in the crayfish have been described in earlier investigations. Concerning the coupling between contralateral legs it was only known that these influences are weaker than those acting between ipsilateral legs. The nature of these coupling mechanisms between contralateral legs of the crayfish are investigated here by running left and right legs on separate walking belts at different speeds. The results show that coordination is performed by a phase-dependent shift of the anterior extreme position of the influenced leg. This backward shift leads to a shortening of both the return stroke and the following power stroke. As the coupling influence is only weak, several steps might be necessary to retain normal coordination after a disturbance. This corresponds to v. Holst's relative coordination. The influences act in both directions, from left to right and vice versa. However, one side may be more or less dominant. A gradient was found in the way that anterior leg pairs show less strong coordination than posterior legs. In some cases the coupling between diagonally neighbouring legs was found to be stronger than between contralateral legs of the same segment. The interpretation of this result is still open.  相似文献   

3.
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.  相似文献   

4.
Summary Stick insects (Carausius morosus) walking on a wheel were perturbed by restricting the forward protraction of individual legs. A barrier placed before a single middle or rear leg prevented that leg from reaching its normal protraction endpoint but allowed it unimpeded retraction. Upon striking the barrier, the protracting leg attempted to get past it and thereby prolonged protraction. This prolongation increased with the extent to which the obstruction infringed upon the leg's normal step range. Barriers placed near the midpoint of this range elicited large perturbations: the blocked leg often continued its protraction throughout many step cycles of the other legs (Fig. 1 E, F). For the most part walking was irregular and smooth forward progression was disrupted. Nevertheless, the infrequent steps by the affected leg usually were coordinated with those of the adjacent ipsilateral legs.More rostral barrier positions elicited smaller perturbations: the blocked leg usually made one step in each step cycle of the other legs (Fig. 1 B, C, D, G). Measurements for these regular step sequences showed quantitatively that protraction duration increased in proportion to the severity of the infringement on normal leg movement (Figs. 3, 4). The fraction of the step period occupied by protraction increased from ca. 10% for normal walking to ca. 50% for caudal barrier positions. This proportionality is interpreted to show the importance of spatial components of the walking program.When one leg was obstructed, its extended protraction influenced the stepping of the three adjacent legs as follows. First, the ipsilateral rostral leg showed the largest change: its protraction onset was regularly delayed for the duration of the extended protraction (Figs. 4, 7, 8), demonstrating a strong, centrally mediated inhibition. The presence of a further delay of up to 100 to 140 ms suggests that peripheral input from the protracting leg may be important for releasing this inhibition. Second, steps by an adjacent caudal leg were not measurably affected. However, the method may not have sufficed to reveal such effects because during regular walking middle leg protractions rarely lasted long enough to conflict with subsequent steps by the ipsilateral rear leg. Third, contralateral effects differed between middle and rear leg obstructions. If the obstructed leg was a middle leg, its extended protraction had little effect upon stepping by the contralateral middle leg: the latter leg frequently protracted while the blocked leg continued its protraction and there was no consistent change in the phase relation of these two legs (Table 1). In contrast, if the obstructed leg was a rear leg, protractions by the contralateral rear leg tended to be delayed (Table 1).  相似文献   

5.
It is often reported in the early literature that insects walk with the legs protacting in diagonal pairs rather than the triplet of three legs associated with the tripod step pattern. The diagonal pattern implies that legs of the same segment have a phase relationship significantly different from 0.5. Such a pattern of leg recovery has been demonstrated quantitatively for the stick insect (Graham, 1972). Such patterns occur in several insects and systematic asymmetry can even be detected in the earliest quantitative study on cockroaches (Hughes, 1957) when the animals are walking slowly. More recently Spirito and Mushrush (1979) have reported systematic deviations from a phase of 0.5 similar to those observed in stick insects. Asymmetry has also been quantitatively demonstrated in Katydids (Graham, 1978) and has recently been observed in Mantid walking (Thomson, personal communication). This phenomenon seems to be a general characteristic of slow walking coordination in insects. In stick insects asymmetry only becomes obvious in gait II at slow speeds although there can be systematic differences in ipsilateral coordination on right and left sides even at the highest speeds in this gait (Graham, 1972).  相似文献   

6.
A model of pattern generation of cockroach walking reconsidered   总被引:1,自引:0,他引:1  
Cockroaches that have been decapitated or that have cut thoracic connectives can show rhythmic bursting in motoneurons to intrinsic leg muscles. These preparations have been studied as models for walking and to evaluate the functions of leg proprioceptors. The present study demonstrates that headless cockroaches walk extremely poorly and slowly with considerable discoordination of motoneuronal activity, these preparations show rhythmic motoneuron bursting that is similar to righting responses (attempts to turn upright) of intact animals when placed on their backs, and bursting is inhibited when a headless animal is turned or turns itself upright. Thus, rhythmic motoneuron activity of these preparations is most probably attempted righting rather than walking. It is concluded that the headless cockroach is useful for understanding the motor mechanisms underlying righting and walking but is not of value in assessing the functions of proprioceptive feedback.  相似文献   

7.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

8.
Resonant frequencies of arms and legs identify different walking patterns   总被引:1,自引:0,他引:1  
The present study is aimed at investigating changes in the coordination of arm and leg movements in young healthy subjects. It was hypothesized that with changes in walking velocity there is a change in frequency and phase coupling between the arms and the legs. In addition, it was hypothesized that the preferred frequencies of the different coordination patterns can be predicted on the basis of the resonant frequencies of arms and legs with a simple pendulum model. The kinematics of arms and legs during treadmill walking in seven healthy subjects were recorded with accelerometers in the sagittal plane at a wide range of different velocities (i.e., 0.3-1. 3m/s). Power spectral analyses revealed a statistically significant change in the frequency relation between arms and legs, i.e., within the velocity range 0.3-0.7m/s arm movement frequencies were dominantly synchronized with the step frequency, whereas from 0.8m/s onwards arm frequencies were locked onto stride frequency. Significant effects of walking speed on mean relative phase between leg and arm movements were found. All limb pairs showed a significantly more stable coordination pattern from 0.8 to 1.0m/s onwards. Results from the pendulum modelling demonstrated that for most subjects at low-velocity preferred movement frequencies of the arms are predicted by the resonant frequencies of individual arms (about 0.98Hz), whereas at higher velocities these are predicted on the basis of the resonant frequencies of the individual legs (about 0.85Hz). The results support the above-mentioned hypotheses, and suggest that different patterns of coordination, as shown by changes in frequency coupling and phase relations, can exist within the human walking mode.  相似文献   

9.
As in the preceding paper stick insects walk on a treadwheel and different legs are put on platforms fixed relative to the insect's body. The movement of the walking legs is recorded in addition to the force oscillations of the standing legs. The coordination between the different legs depends upon the number and arrangement of the walking legs and the legs standing on platforms. In most experimental situations one finds a coordination which is different from that of a normal walking animal.Supported by DFG (Cr 58/1)  相似文献   

10.
Rock lobsters are able to perform long and stereotyped stepping sequences above a motor driven treadmill. Forward walking samples are estimated by mean of statistical methods to draw out the basic rules involved in the locomotor behaviour (Fig. 1).
  • - The spatial and temporal parameters defined in a single propulsive leg are either invariable in respect to the imposed speed, as the mean step length (L), the return stroke duration (Tr) and the pause times (T's, T'r), or speed dependent as the power stroke duration (Ts) and the whole period (Figs. 2 and 3).
  • - The interleg phase coupling is strong and stable in the ipsilateral rear pairs (4–5), these legs acting most of the time in absolute coordination (1:1) or in harmonic ratio (2:1). In the contralateral pairs (R4-L4, R5-L5) the legs roughly operate in antiphase, but the relationship appears much weaker and variable, with frequent episodes of relative coordination (Fig. 4).
  • - The time intervals between the ground contact of any leg and the swing initiation in the nearest ones appear somewhat constant and could be closely related to the mechanism of stepping synchronization. The “5 on - 4 off” delay, very stable and always positive, suggests that the rear legs could exert a predominant influence upon the rhythmical movements of the next anterior ipsilateral appendages (Fig. 5).
  • - To test the contralateral relationships, the treadmill belts can be decoupled in order to impose different walking speeds on each side. Such a conflicting stimulus reveals that:
    1. The relative hierarchy always observed between the ipsilateral legs can be artificially created between the two sides (Fig. 6).
    2. The driving influence of a given leg is closely linked to the intensity of EMG's discharges in its power stroke muscles.
    3. The contralateral appendages are able to walk in absolute coordination despite a large speed difference between the two sides (up to 4 cm/s). Under such a constraint, the walking legs alter its invariable parameters (L and Tr) to reach a common step period and steadily maintain the alternating pattern (Figs. 6 and 7).
  •   相似文献   

    11.
    Amputation of a leg alters the amplitude of the adjacent ipsilateral legs during walking: Amputation of a middle leg encreases the amplitude of the foreleg especially by changing the rear extreme position. Amputation of a foreleg reduces the amplitude of the middle leg especially by changing the front extreme position. There is no significant influence observable on contralateral legs.  相似文献   

    12.

    The effect of transcutaneous electrical spinal cord stimulation on the kinematic parameters of movement of the ipsilateral and contralateral legs in healthy subjects during treadmill walking at speeds of 1.5 to 1.7 km/h has been studied. The stimulation electrodes were placed 2.5 cm lateral from the right and left sides of the spinal midline at L1 and T11 levels. During the stance phase, stimulation was administered at L1 level at a frequency of 15 Hz; during the swing phase the stimuli was delivered to T11 at a frequency of 30 Hz, followed by alternating stimulation at L1 and T11. The stimulation during the swing phase (T11) was more effective than that during the stance phase (L1); the most impressive changes in kinematic parameters were observed when combined delivery of stimulations to L1 and T11 was performed. With unilateral spinal stimulation, the amplitude of the angles in the hip, knee and/or ankle joints, the length of the transfer, and the height of the leg elevation increased in the ipsilateral leg. Similar but less pronounced changes were observed in the contralateral leg. A 10% increase in the duration of stimulation in the swing phase caused a change in the kinematic stepping parameters both in ipsilateral and contralateral legs. The maximum effect was observed when bilateral alternating stimulation was used. These data show that phasic transcutaneous electrical spinal cord stimulation, using a wide range of natural walking speeds, can be applied to control kinematic movement parameters.

      相似文献   

    13.
    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.  相似文献   

    14.
    The escape behavior of the cockroach Periplaneta americana was studied by means of high speed filming (250 frames/s) and a computer-graphical analysis of the body and leg movements. The results are as follows: 1. The behavior begins with pure rotation of the body about the posteriorly located cerci, followed by rotation plus forward translation, and finally pure translation (Figs. 1, 2). 2. A consistent inter-leg coordination is used for the entire duration of the turn (Fig. 3A). At the start of the movement, five or all six legs execute their first stance phase (i.e. leg on the ground during locomotion) simultaneously. By the end of the turn the pattern has changed to the alternate 'tripod' coordination characteristic of insect walking. The change-over from all legs working together, to working alternately, occurs by means of a consistent pattern of delays in the stepping of certain legs. 3. The movements made by each leg during its initial stance phase are carried out using consistent movement components in the anterior-posterior (A-P) and the medial-lateral (M-L) axes (Fig. 4A). The movement at a particular joint in each middle leg is found to be diagnostic for the direction of turn. 4. The size and direction of a given leg's M-L movement in its initial stance phase depends on the same leg's prior A-P position (Fig. 5). No such feedback effects were seen among different legs. 5. Animals that are fixed to a slick surface on which they make slipping leg movements show the same inter-leg coordination (Fig. 3B), direction of initial stance movement (Fig. 4B) and dependence of the leg's initial M-L movement on its prior A-P position (Fig. 6), as did free-ranging animals. 6. Cockroaches that are walking at the moment they begin their escape reverse those ongoing leg movements that are contrary to escape movements. 7. These results are discussed in terms of the overall coordination of the complex movements, and in terms of the known properties of the neural circuitry for escape. Possibilities for neurobiological follow-up of certain of the findings presented here are also addressed.  相似文献   

    15.
    Responses of the lower limb to load carrying in walking man   总被引:2,自引:0,他引:2  
    Muscle activity patterns of several lower limb muscles were examined in the left leg of normal human subjects walking at comfortable speed on a treadmill. In addition knee angular changes and the durations of the swing and stance phases of the step cycle were recorded. Data were collected during a period of normal control walking and when the subject carried a load, either in his right or left hand or on his back. Load (up to 20% of body weight) carried in either hand caused minimal changes in the kinematic parameters investigated but evoked significant prolongation of the normal ongoing electromyographic activity in the contralateral Gluteus medius and in the ipsilateral Gastrocnemius, Vastus lateralis and Semimembranosus. Load (up to 50% of body weight) carried on the back significantly shortened the swing phase and prolonged the ongoing electromyographic activity of the Vastus lateralis. These findings would seem to indicate that the activity of the leg musculature during walking is so tightly controlled that deviation from the normal kinematic pattern of the legs is largely prevented even when body posture and balance are disturbed by carrying substantial additional load.  相似文献   

    16.
    Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

    17.
    Intersegmental coordination during locomotion in legged animals arises from mechanical couplings and the exchange of neuronal information between legs. Here, the information flow from a single leg sense organ of the stick insect Cuniculina impigra onto motoneurons and interneurons of other legs was investigated. The femoral chordotonal organ (fCO) of the right middle leg, which measures posture and movement of the femur-tibia joint, was stimulated, and the responses of the tibial motoneuron pools of the other legs were recorded. In resting animals, fCO signals did not affect motoneuronal activity in neighboring legs. When the locomotor system was activated and antagonistic motoneurons were bursting in alternation, fCO stimuli facilitated transitions from flexor to extensor activity and vice versa in the contralateral leg. Following pharmacological treatment with picrotoxin, a blocker of GABA-ergic inhibition, the tibial motoneurons of all legs showed specific responses to signals from the middle leg fCO. For the contralateral middle leg we show that fCO signals encoding velocity and position of the tibia were processed by those identified local premotor nonspiking interneurons known to contribute to posture and movement control during standing and voluntary leg movements. Interneurons received both excitatory and inhibitory inputs, so that the response of some interneurons supported the motoneuronal output, while others opposed it. Our results demonstrate that sensory information from the fCO specifically affects the motoneuronal activity of other legs and that the layer of premotor nonspiking interneurons is a site of interaction between local proprioceptive sensory signals and proprioceptive signals from other legs.  相似文献   

    18.
    ABSTRACT. The motor output to the protractor and retractor mucles moving the coxa of the middle leg of Carausius morosus was recorded from the thoracic nerves during walking on a treadwheel. The leg movements on the wheel were generally similar to those found in free-walking animals, but tripod coordination was relatively independent of period, and the coordination of the adult animal on the wheel was most closely related to that found in free-walking first instars. The activity of a common inhibitor and four excitatory axons of the retractor and an excitatory axon of the protractor were followed for 850 steps (in six animals) to give a summary of the behaviour of the different units. The motor activity is less stereotyped than that previously reported for insects. There was strong reciprocity between the antagonists, but this was not directly correlated with the forward and backward movements of the legs. The first part of the stance phase of the leg was accompanied by a strong burst in the protractor nerve and relatively little retractor activity. This was followed by the main retractor burst which occupied the last 60% of the stance phase. The results are compared with motor output records of the locust and with earlier force-plate measurements on the stick insect. It must be concluded that the mesothoracic leg initially resists forward movement of the body by the other legs during a typical walking step.  相似文献   

    19.
    After amputation geriatric patients have been enabled to get up and walk with the help of a prosthesis, an “early walking aid.” The physiotherapist measures the patient, fits the early walking aid, and instructs him in walking. The prosthesis is simple to make, easy to apply, and allows early walking with the use of a walking frame or sticks. Thus the geriatric amputee can walk as soon after operation as his general condition allows and the surgeon wishes.  相似文献   

    20.
    Crayfish initiate walking behavior not only reflexively in response to external stimuli but also spontaneously in the absence of any specific stimulus. In order to analyze the initiation mechanism underlying these different types of walking, we made simultaneous electromyographic (EMG) recordings from thoracic legs when animals initiated walking, either reflexively or spontaneously, and video recorded their movements synchronously with the EMG recording. Two different stimuli, mechanical and chemical, were used to reflexively induce walking. A non-rhythmic, sustained activation of leg muscles was found to precede the behavioral initiation of either type of walking. The duration of this non-rhythmic muscle activation was significantly longer in the spontaneously initiated walking than in the mechanical stimulus-evoked walking, although no difference was observed between the spontaneous and chemical stimulus-evoked walking. EMG recordings from all eight legs revealed that their non-rhythmic muscle activation occurred almost simultaneously prior to initiation of rhythmical stepping movements. When an animal was suspended without a leg substratum, the timing of muscle activation was more variable among the legs than in the free condition on the substratum. When the circumesophageal commissures were both severed to eliminate signals descending from the brain to the thoracic ganglia, the bilaterally coordinated rhythmic burst activity was not observed in the walking legs. These findings suggest that the spontaneous initiation of walking behavior requires sensory feedback signals from leg proprioceptors, subserved by a different descending activation mechanism from that for stimulus-driven initiation of walking.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号