首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Reflex responses in the lower limbs were investigated using electromyographic and kinematic techniques in man walking on a treadmill. A momentary resistance was applied to one leg at three selected points in the step cycle. The responses to such stimuli, as well as the locomotor activity, were picked up electromyographically and displayed on a four channel oscilloscope. Four superficial muscles viz: gluteus medius, vastus lateralis, rectus femoris and tibialis anterior were studied in both ipsilateral and contralateral legs. In general it was found that the ipsilateral leg muscles produced a response throughout the step cycle regardless of whether the muscle was active or silent at the time the reflex occurred. In contrast, contralateral leg muscles showed a different pattern of response which depended on where the resistance was applied in the step cycle. The long reflex latency, of the order of 80 ms, was a consistent feature of the responses and suggests the possible involvement of supra-spinal pathways. The latencies for a particular muscle were identical on the ipsi- and contralateral sides. The durations of the swing and stance phases of the step cycle were also recorded but showed no change due to application of the resistance. In general, the results indicate that the body has the inherent ability to reinforce the ongoing locomotor muscle activity in response to external stimuli in order to maintain upright balanced walking.  相似文献   

2.
To investigate the metabolic cost and muscular actions required for the initiation and propagation of leg swing, we applied a novel combination of external forces to subjects walking on a treadmill. We applied a forward pulling force at each foot to assist leg swing, a constant forward pulling force at the waist to provide center of mass propulsion, and a combination of these foot and waist forces to evaluate leg swing. When the metabolic cost and muscle actions were at a minimum, the condition was considered optimal. We reasoned that the difference in energy consumption between the optimal combined waist and foot force trial and the optimal waist force-only trial would reflect the metabolic cost of initiating and propagating leg swing during normal walking. We also reasoned that a lower muscle activity with these assisting forces would indicate which muscles are normally responsible for initiating and propagating leg swing. With a propulsive force at the waist of 10% body weight (BW), the net metabolic cost of walking decreased to 58% of normal walking. With the optimal combination, a propulsive force at the waist of 10% BW plus a pulling force at the feet of 3% BW the net metabolic cost of walking further decreased to 48% of normal walking. With the same combination, the muscle activity of the iliopsoas and rectus femoris muscles during the swing phase was 27 and 60% lower, respectively, but the activity of the medial gastrocnemius and soleus before swing did not change. Thus our data indicate that approximately 10% of the net metabolic cost of walking is required to initiate and propagate leg swing. Additionally, the hip flexor muscles contribute to the initiation and propagation leg swing.  相似文献   

3.
Recent investigations of proprioreceptors in the walking systems of cats, insects and crustaceans have identified reflex pathways that regulate the timing of the transition from stance to swing, and control the magnitude of ongoing motoneuronal activity. An important finding in the cat is that during locomotor activity, the influence of feedback from the Golgi tendon organs in extensor muscles onto extensor motoneurons is reversed from inhibition to excitation. The excitatory action of tendon organs during stance ensures that stance is maintained while extensor muscles are loaded, and may regulate the magnitude of extensor activity according to the load carried by the leg. Afferents from primary and secondary spindles in extensor and flexor muscles have also been found to influence the timing of the locomotor rhythm in a functionally relevant manner. Recent studies indicate that reflex reversals and the regulation of timing by multiple proprioceptive systems are also features of walking systems in arthropods.  相似文献   

4.
The goal of this study was to identify changes in muscle activity in below-knee amputees in response to increasing steady-state walking speeds. Bilateral electromyographic (EMG) data were collected from 14 amputee and 10 non-amputee subjects during four overground walking speeds from eight intact leg and five residual leg muscles. Using integrated EMG measures, we tested three hypotheses for each muscle: (1) there would be no difference in muscle activity between the residual and intact legs, (2) there would be no difference in muscle activity between the intact leg and non-amputee legs, and (3) muscle activity in the residual and intact legs would increase with speed. Most amputee EMG patterns were similar between legs and increased in magnitude with speed. Differences occurred in the residual leg biceps femoris long head, vastus lateralis and rectus femoris, which increased in magnitude during braking compared to the intact leg. These adaptations were consistent with the need for additional body support and forward propulsion in the absence of the plantar flexors. With the exception of the intact leg gluteus medius, all intact leg muscles exhibited similar EMG patterns compared to the control leg. Finally, the residual, intact and control leg EMG all had a significant speed effect that increased with speed with the exception of the gluteus medius.  相似文献   

5.
We examined the mechanisms underlying force feedback in cockroach walking by recording sensory and motor activities in freely moving animals under varied load conditions. Tibial campaniform sensilla monitor forces in the leg via strains in the exoskeleton. A subgroup (proximal receptors) discharge in the stance phase of walking. This activity has been thought to result from leg loading derived from body mass. We compared sensory activities when animals walked freely in an arena or on an oiled glass plate with their body weight supported. The plate was oriented either horizontally (70-75% of body weight supported) or vertically (with the gravitational vector parallel to the substrate). Proximal sensilla discharged following the onset of stance in all load conditions. In addition, activity was decreased in the middle third of the stance phase when the effect of body weight was reduced. Our results suggest that sensory discharges early in stance result from forces generated by contractions of muscles that press the leg as a lever against the substrate. These forces can unload legs already in stance and assure the smooth transition of support among the limbs. Force feedback later in stance may adjust motor output to changes in leg loading.  相似文献   

6.
We studied the mechanisms underlying support of body load in posture and walking in serially homologous legs of cockroaches. Activities of the trochanteral extensor muscle in the front or middle legs were recorded neurographically while animals were videotaped. Body load was increased via magnets attached to the thorax and varied through a coil below the substrate. In posture, tonic firing of the slow trochanteral extensor motoneuron (Ds) in each leg was strongly modulated by changing body load. Rapid load increases produced decreases in body height and sharp increments in extensor firing. The peak of extensor activity more closely approximated the maximum velocity of body displacement than the body position. In walking, extensor bursts in front and middle legs were initiated during swing and continued into the stance phase. Moderate tonic increases in body load elicited similar, specific, phase dependent changes in both legs: extensor firing was not altered in swing but was higher after foot placement in stance. These motor adjustments to load are not anticipatory but apparently depend upon sensory feedback. These data are consistent with previous findings in the hind legs and support the idea that body load is countered by common motor mechanisms in serially homologous legs.  相似文献   

7.

The effect of transcutaneous electrical spinal cord stimulation on the kinematic parameters of movement of the ipsilateral and contralateral legs in healthy subjects during treadmill walking at speeds of 1.5 to 1.7 km/h has been studied. The stimulation electrodes were placed 2.5 cm lateral from the right and left sides of the spinal midline at L1 and T11 levels. During the stance phase, stimulation was administered at L1 level at a frequency of 15 Hz; during the swing phase the stimuli was delivered to T11 at a frequency of 30 Hz, followed by alternating stimulation at L1 and T11. The stimulation during the swing phase (T11) was more effective than that during the stance phase (L1); the most impressive changes in kinematic parameters were observed when combined delivery of stimulations to L1 and T11 was performed. With unilateral spinal stimulation, the amplitude of the angles in the hip, knee and/or ankle joints, the length of the transfer, and the height of the leg elevation increased in the ipsilateral leg. Similar but less pronounced changes were observed in the contralateral leg. A 10% increase in the duration of stimulation in the swing phase caused a change in the kinematic stepping parameters both in ipsilateral and contralateral legs. The maximum effect was observed when bilateral alternating stimulation was used. These data show that phasic transcutaneous electrical spinal cord stimulation, using a wide range of natural walking speeds, can be applied to control kinematic movement parameters.

  相似文献   

8.
The kinematic and electromyographic parameters of a normal walking pattern have been studied before immersion and on the sixth day of immersion in six volunteers aged 22–25 years. It has been shown that exposure to supportless conditions for six days resulted in a decrease in the angular velocities in the knee and ankle joints and small changes in the amplitude of angular motions in the joints of the leg. However, the kinematic stereotype of locomotor movements was not significantly changed after six days of immersion. An increase in the electromyographic cost of the shin locomotion indicates shifts in the central and peripheral systems of the locomotion apparatus.  相似文献   

9.
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.  相似文献   

10.
Decreases in load are important cues in the control of posture and walking. We recorded activities of the tibial campaniform sensilla, receptors that monitor forces as strains in the exoskeleton, in the middle legs of freely moving cockroaches. Small magnets were attached to the thorax and body load was changed by applying currents to a coil below the substrate. Body position was monitored by video recording. The tibial sensilla are organized into proximal and distal subgroups that have different response properties and reflex effects: proximal sensilla excite extensor motoneurons while distal receptors inhibit extensor firing. Sudden load decreases elicited bursts from distal sensilla, while increased load excited proximal receptors. The onset of sensory discharges closely approximated the time of peak velocity of body movement in both load decreases and increases. Firing of distal sensilla rapidly adapted to sustained unloading, while proximal sensilla discharged tonically to load increases. Load decreases of small amplitude or at low rates produced only inhibition of proximal activity while decrements of larger size or rate elicited distal firing. These response properties may provide discrete signals that either modulate excitatory extensor drive during small load variations or inhibit support prior to compensatory stepping or initiation of swing.  相似文献   

11.
Recent evidence suggests that performance of complex locomotor tasks such as walking may be accomplished using a simple underlying organization of co-active muscles, or “modules”, which have been assumed to be structured to perform task-specific biomechanical functions. However, no study has explicitly tested whether the modules would actually produce the biomechanical functions associated with them or even produce a well-coordinated movement. In this study, we generated muscle-actuated forward dynamics simulations of normal walking using muscle activation modules (identified using non-negative matrix factorization) as the muscle control inputs to identify the contributions of each module to the biomechanical sub-tasks of walking (i.e., body support, forward propulsion, and leg swing). The simulation analysis showed that a simple neural control strategy involving five muscle activation modules was sufficient to perform the basic sub-tasks of walking. Module 1 (gluteus medius, vasti, and rectus femoris) primarily contributed to body support in early stance while Module 2 (soleus and gastrocnemius) contributed to both body support and propulsion in late stance. Module 3 (rectus femoris and tibialis anterior) acted to decelerate the leg in early and late swing while generating energy to the trunk throughout swing. Module 4 (hamstrings) acted to absorb leg energy (i.e., decelerate it) in late swing while increasing the leg energy in early stance. Post-hoc analysis revealed an additional module (Module 5: iliopsoas) acted to accelerate the leg forward in pre- and early swing. These results provide evidence that the identified modules can act as basic neural control elements that generate task-specific biomechanical functions to produce well-coordinated walking.  相似文献   

12.
During level walking, arm swing plays a key role in improving dynamic stability. In vivo investigations with a telemeterized vertebral body replacement showed that spinal loads can be affected by differences in arm positions during sitting and standing. However, little is known about how arm swing could influence the lumbar spine and hip joint forces and motions during walking. The present study aims to provide better understanding of the contribution of the upper limbs to human gait, investigating ranges of motion and joint reaction forces.A three-dimensional motion analysis was carried out via a motion capturing system on six healthy males and five patients with hip instrumented implant. Each subject performed walking with different arm swing amplitudes (small, normal, and large) and arm positions (bound to the body, and folded across the chest). The motion data were imported in a commercial musculoskeletal analysis software for kinematic and inverse dynamic investigation.The range of motion of the thorax with respect to the pelvis and of the pelvis with respect to the ground in the transversal plane were significantly associated with arm position and swing amplitude during gait. The hip external-internal rotation range of motion statistically varied only for non-dominant limb. Unlike hip joint reaction forces, predicted peak spinal loads at T12-L1 and L5-S1 showed significant differences at approximately the time of contralateral toe off and contralateral heel strike.Therefore, arm position and swing amplitude have a relevant effect on kinematic variables and spinal loads, but not on hip loads during walking.  相似文献   

13.
Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking.Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal.An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally. Application of forces simulating the weight of the shell on the 5th pereopods moved CM just anterior to the thoracic-abdominal junction. However, lateral and vertical coordinates were not altered under these different load conditions. The interaction of the shell aperture with proximal leg joints and with the CM indicates that the oblique angles of the legs, due primarily to the rotation of the TC joints, is an adaptation that confers stability during walking.  相似文献   

14.
It is unclear to what extent ballistic walking models can be used to qualitatively predict the swing phase at comfortable walking speed. Different study findings regarding the accuracy of the predictions of the swing phase kinematics may have been caused by differences in (1) kinematic input, (2) model characteristics (e.g. the number of segments), and (3) evaluation criteria. In the present study, the predictive validity of four ballistic swing phase models was evaluated and compared, that is, (1) the ballistic walking model as originally introduced by Mochon and McMahon, (2) an extended version of this model in which heel-off of the stance leg is added, (3) a double pendulum model, consisting of a two-segment swing leg with a prescribed hip trajectory, and (4) a shank pendulum model consisting of a shank and rigidly attached foot with a prescribed knee trajectory. The predictive validity was evaluated by comparing the outcome of the model simulations with experimentally derived swing phase kinematics of six healthy subjects. In all models, statistically significant differences were found between model output and experimental data. All models underestimated swing time and step length. In addition, statistically significant differences were found between the output of the different models. The present study shows that although qualitative similarities exist between the ballistic models and normal gait at comfortable walking speed, these models cannot adequately predict swing phase kinematics.  相似文献   

15.
Nine subjects walked on a treadmill with load weights equal to 10% and 40% of body weight carried on the back. Although the speed of the treadmill was selected so that the measured oxygen consumption (VO2) was the same for both load conditions, the heavier load placed an extra strain on the cardiopulmonary system and was perceived by all subjects as harder work than the lighter load. When the subjects worked at their own pace, walking on a level road or climbing stairs with load weights equal to 10% and 40% of body weight, they compensated for the heavier load by decreasing walking speed or climbing rate. Although the energy costs calculated from walking speed, body and load weight for self-paced walking and the external work of stair climbing were the same for both load conditions, the heavier load was again perceived as harder work. These findings are discussed as they relate to the definition of acceptable load weights.  相似文献   

16.
The possibility of initiating an involuntary walking rhythm in a suspended human leg by electrical stimulation was studied. The subjects lay on the side with one leg suspended in an exoskeleton allowing horizontal rotation in three joints: the hip, knee, and ankle ones. To evoke involuntary walking of the suspended leg, two methods were used: continuous vibration of the quadriceps muscle of the hip and electrical stimulation of the cutaneous nerves innervating the foot of the immobile leg. The hip and ankle were involved in the involuntary movements, with reciprocal bursts of electromyographic activity being also observed in the antagonistic muscles of the hip. The application of an external load (4 N or 8 N) to the foot caused a perceptible intensification of its movements. An additional weight (0.5 kg) or a rubber band wrapped around the foot caused no substantial change in the pattern of stimulated walking. Electrical stimulation is an effective means of activating walking movements, and their characteristics confirm the assumption that the walking rhythm is of central origin. Additional afferentation from the sole’s receptors plays an important role in the modulation of the induced movements and the modification of the general walking pattern under the conditions of muscle unloading.  相似文献   

17.
Walking behavior is context-dependent, resulting from the integration of internal and external influences by specialized motor and pre-motor centers. Neuronal programs must be sufficiently flexible to the locomotive challenges inherent in different environments. Although insect studies have contributed substantially to the identification of the components and rules that determine locomotion, we still lack an understanding of how multi-jointed walking insects respond to changes in walking orientation and direction and strength of the gravitational force. In order to answer these questions we measured with high temporal and spatial resolution the kinematic properties of untethered Drosophila during inverted and vertical walking. In addition, we also examined the kinematic responses to increases in gravitational load. We find that animals are capable of shifting their step, spatial and inter-leg parameters in order to cope with more challenging walking conditions. For example, flies walking in an inverted orientation decreased the duration of their swing phase leading to increased contact with the substrate and, as a result, greater stability. We also find that when flies carry additional weight, thereby increasing their gravitational load, some changes in step parameters vary over time, providing evidence for adaptation. However, above a threshold that is between 1 and 2 times their body weight flies display locomotion parameters that suggest they are no longer capable of walking in a coordinated manner. Finally, we find that functional chordotonal organs are required for flies to cope with additional weight, as animals deficient in these proprioceptors display increased sensitivity to load bearing as well as other locomotive defects.  相似文献   

18.
19.
The hip joint forces of sheep and dogs were measured with instrumented endoprostheses and the results were compared with reported data concerning these forces in man. In all animals load directions with 0 to 30° inclinations relative to the femoral axis predominated. The transverse components mostly acted from medio-ventral directions. While the force orientations varied little during each single stance phase, they changed rapidly during the swing phase. Strong inter-and intra-individual differences of load directions were found in all animals. Irregular forces, acting upwards or transverse to the femur, were frequently observed. Maximum joint forces were up to 110% of body weight and depended more on the postoperative time than on the walking speed. Load orientations in the animals were similar to those reported for man. In this regard sheep and dogs appear equally well suited for tests of hip endoprostheses for man.  相似文献   

20.
Although numerous studies have investigated the effects of load carriage on gait mechanics, most have been conducted on active military men. It remains unknown whether men and women adapt differently to carrying load. The purpose of this study was to compare the effects of load carriage on gait mechanics, muscle activation patterns, and metabolic cost between men and women walking at their preferred, unloaded walking speed. We measured whole body motion, ground reaction forces, muscle activity, and metabolic cost from 17 men and 12 women. Subjects completed four walking trials on an instrumented treadmill, each five minutes in duration, while carrying no load or an additional 10%, 20%, or 30% of body weight. Women were shorter (p<0.01), had lower body mass (p=0.01), and had lower fat-free mass (p=0.02) compared to men. No significant differences between men and women were observed for any measured gait parameter or muscle activation pattern. As load increased, so did net metabolic cost, the duration of stance phase, peak stance phase hip, knee, and ankle flexion angles, and all peak joint extension moments. The increase in the peak vertical ground reaction force was less than the carried load (e.g. ground force increased approximately 6% with each 10% increase in load). Integrated muscle activity of the soleus, medial gastrocnemius, lateral hamstrings, vastus medialis, vastus lateralis, and rectus femoris increased with load. We conclude that, despite differences in anthropometry, men and women adopt similar gait adaptations when carrying load, adjusted as a percentage of body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号