首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basal termite Mastotermes darwiniensis produces an egg mass, the nature of which is controversial. The debate centres on whether it is homologous with the oothecae of mantids and cockroaches and, if so, whether its simple structure is plesiomorphic or apomorphic within the Dictyoptera. To help resolve these issues we observed primary reproductives of M. darwiniensis during oviposition and examined the morphology of the reproductive product. Oviposition is cockroach-like in that the egg mass is assembled within the vestibulum and the eggs are issued externally in pairs. The reproductive product is an ootheca of the blattarian type. A distinct, tanned outer covering is stretched over the two parallel rows of eggs. No keel is present and no calcium oxalate crystals were apparent in the outer covering. We cannot rule out the possibility that the simple structure of the ootheca is plesiomorphic within Dictyoptera. However, based on (i) apomorphies shared by Mastotermes and Blattaria, and (ii) the life habits of Isoptera, a secondary reduction is the more plausible explanation.  相似文献   

2.
Bacteria of the genus Blattabacterium are intracellular symbionts that reside in specialized cells of cockroaches and the termite Mastotermes darwiniensis. They appear to be obligate mutualists, and are transmitted vertically in the eggs. Such characteristics are expected to lead to equivalent phylogenies for host and symbiont, and we tested this hypothesis using recently accumulated data on relationships among termites and cockroaches and their Blattabacterium spp. Host and symbiont topologies were found to be highly similar, and various tests indicated that they were not statistically different. A close relationship between endosymbionts from termites and members of the wood-feeding cockroach genus Cryptocercus was found, supporting the hypothesis that the former evolved from subsocial, wood-dwelling cockroaches. The majority of the Blattabacterium spp. sequences appear to have undergone similar rates of evolution since their divergence from a common ancestor, and an estimate of this rate was determined based on early Cretaceous host fossils. The results support the idea that the stem group of modern cockroaches radiated sometime between the late Jurassic and early Cretaceous-not the Carboniferous, as has been suggested on the basis of roach-like fossils from this epoch.  相似文献   

3.
A case for ancestral transfer of symbionts between cockroaches and termites   总被引:3,自引:0,他引:3  
Living species of the cockroach family Cryptocercidae have intestinal symbionts that are congeneric with some of the gut protozoa found in Isoptera. Presence of such closely related symbionts in cryptocercids and in termites has been frequently interpreted as a uniquely derived homologous character shared between the two xylophagous groups. This may not be the most parsimonious interpretation. Cryptocercus nymphs placed into Zootermopsis (dampwood termite) colonies were killed and eaten by the termites. Termites placed into a Cryptocercus nest box were also fully consumed. Modern Cryptocercus punctulatus and Zootermopsis are often found in the same decaying logs in the Pacific Northwest of the U.S.A., and it is likely that their ancestors also cohabited in at least a portion of their ranges. By occasionally killing and consuming an intruder from the other group, gut protozoa could have been acquired and exchanged between termites and Cryptocercus or their ancestors, under natural conditions and before the life histories of the protozoa became specialized within the host orders. Implications for assessing the phylogeny of the two dictyopteroid groups are also discussed.  相似文献   

4.
Allatostatins with the C‐terminal ending Tyr/Phe‐Xaa‐Phe‐Gly‐Leu/Ile‐amide (FGLa/ASTs) are widespread neuropeptides with multiple functions. The gene encoding the FGLa/AST polypeptide precursor was first isolated from cockroaches and since then could be identified in many insects and crustaceans. With its strictly conserved regions in combination with variable regions the gene seems to be a good candidate for phylogenetic analyses between closely and distantly related species. Here, the structure of the FGLa/AST gene of the most primitive termite, the giant northern termite Mastotermes darwiniensis Froggatt, was identified. The FGLa/AST gene of the woodroach Cryptocercus darwini was also determined. Precursor sequences of both species possess the general organization of dictyopteran FGLa/AST precursors containing 14 putative FGLa/AST peptides. In M. darwiniensis, only 11 out of the 14 FGLa/AST‐like peptides possess the C‐terminal conserved region Y/FXFGL/I/V/M and four of the putative peptide structures are not followed by a Gly residue that would lead to nonamidated peptides. Phylogenetic analyses show the high degree of similarity of dictyopteran FGLa/AST sequences. The position of termites, nested within the Blattaria, confirms that termites have evolved from primitive cockroaches.  相似文献   

5.
Isoptera are highly specialized cockroaches and are one of the few eusocial insect lineages. Cryptocercus cockroaches have appeared to many as ideal models for inference on the early evolution of termites, due to their possible phylogenetic relationship and several shared key attributes in life history. Recently, Pellens, Grandcolas, and colleagues have proposed the blaberid cockroach Parasphaeria boleiriana to be an alternative model for the early evolution in termites. We compare the usefulness of Cryptocercus and P. boleiriana as models for termite evolution. Cryptocercus and lower Isoptera (1) can both feed on comparatively recalcitrant wood, (2) have an obligate, rich and unique hypermastigid and oxymonadid fauna in the hindgut, (3) transfer these flagellates to the next generation by anal trophallaxis, (4) have social systems that involve long-lasting biparental care, and, finally, (5) are strongly suggested to be sister groups, so that the key attributes (1)-(4) appear to be homologous between the two taxa. On the other hand, P. boleiriana (1) feeds on soft, ephemeral wood sources, (2) shows no trace of the oxymonadid and hypermastigid hindgut fauna unique to Cryptocercus and lower Isoptera, nor does it have any other demonstrated obligate relationship with hindgut flagellates, (3) is likely to lack anal trophallaxis, (4) has only a short period of uniparental brood care, and (5) is phylogenetically remote from the Cryptocercus+Isoptera clade. These facts would argue against any reasonable usage of P. boleiriana as a model for the early evolution of Isoptera or even of the clade Cryptocercus+Isoptera. Cryptocercus thus remains an appropriate model-taxon-by-homology for early termite evolution. As compared to P. boleiriana, some other Blaberidae (such as the Panesthiinae Salganea) appear more useful as model-taxa-by-homoplasy for the early evolution of the Cryptocercus+Isoptera clade, as their brooding behavior is more elaborate than in P. boleiriana.  相似文献   

6.

Background  

Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed.  相似文献   

7.
近年来, 固相微萃取技术的使用显著促进了白蚁踪迹信息素研究的开展。目前, 已有77种白蚁的踪迹信息素得到研究, 常见化学成分为十二碳单烯醇、 十二碳二烯醇和十二碳三烯醇, 其次为新松柏烯。已经鉴定的踪迹信息素主要为单组分或双组分系统。白蚁踪迹信息素由腹板腺分泌, 除澳白蚁科的达氏澳白蚁Mastotermes darwiniensis具有3个腹板腺外, 现存的白蚁均具有1个腹板腺, 位于第4或第5腹节。所有腹板腺都具有类型Ⅰ和Ⅱ两类细胞, 原白蚁亚科(Termopsinae)、 齿白蚁科(Serritermitidae)、 鼻白蚁科(Rhinotermitidae)种类的腹板腺还具有类型Ⅲ细胞。踪迹信息素的生物合成还缺乏研究, 推测有甲羟戊酸、 脂肪醇和饱和表皮烃3种途径。白蚁踪迹信息素的简约性十分显著, 不同地理分布、 生物生态习性以及一些系统距离较远的种类具有相同和密切相关的踪迹信息素。对于许多种类, 相同的信息化合物具有踪迹信息素和配对性信息素双重功能。白蚁踪迹信息素种特异性和简约性的适应意义和进化机制需要进一步研究。  相似文献   

8.
Thorne's (Proc. R. Soc. Lond. B 241, 37 (1990] studies of the laboratory behaviour of extant woodroaches (Cryptocercus) and termites (Zootermopsis) suggest that transfaunation of hindgut protozoans potentially could occur by aggression and consumption in the field. However, existing literature suggests no overlap in protozoan species composition for these two taxa. Furthermore, it is doubtful that transfaunation would occur in the solitary ancestral 'termitoid' and 'roachoid' lines proposed by Thorne: not only is it unlikely that such insects would encounter each other, but it is doubtful that they would show the degree of aggression exhibited by the termite soldiers in her study. Inheritance from an ancestor common to Cryptocercus and the lower termites remains the most logical explanation for the presence of the unique cellulolytic oxymonad, trichomonad and hypermastigote flagellates in these two groups.  相似文献   

9.
Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister-group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites+Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus+termites), and a further series of compensatory base changes in this stem-loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae+Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.  相似文献   

10.
Termites have developed many exocrine glands, generally dedicated to defence or communication. Although a few of these glands occur in all termite species, or represent synapomorphies of larger clades, others are morphological innovations of a single species, or a few related species. Here, we describe the nasus gland, a new gland occurring at the base of the nasus of Angularitermes soldiers. The nasus gland is composed of class 1, 2, and 3 secretory cells, a rare combination that is only shared by the sternal and tergal glands of some termites and cockroaches. The ultrastructural observations suggest that the secretion is produced by class 2 and 3 secretory cells, and released mostly by class 3 cells. The base of the nasus has a rough appearance due to numerous pits bearing openings of canals conducting the secretion from class 3 secretory cells to the exterior. We tentatively assign a defensive function to the nasus gland, although further research is needed to confirm this function. Although the gland is described only from species of Angularitermes, other genera of Nasutitermitinae also present a rough nasus base, suggesting the presence of a similar, possibly homologous, gland.  相似文献   

11.
Beneficial microbial associations with insects are common and are classified as either one or a few intracellular species that are vertically transmitted and reside intracellularly within specialized organs or as microbial assemblages in the gut. Cockroaches and termites maintain at least one if not both beneficial associations. Blattabacterium is a flavobacterial endosymbiont of nearly all cockroaches and the termite Mastotermes darwiniensis and can use nitrogenous wastes in essential amino acid and vitamin biosynthesis. Key changes during the evolutionary divergence of termites from cockroaches are loss of Blattabacterium, diet shift to wood, acquisition of a specialized hindgut microbiota, and establishment of advanced social behavior. Termite gut microbes collaborate to fix nitrogen, degrade lignocellulose, and produce nutrients, and the absence of Blattabacterium in nearly all termites suggests that its nutrient-provisioning role has been replaced by gut microbes. M. darwiniensis is a basal, extant termite that solely retains Blattabacterium, which would show evidence of relaxed selection if it is being supplanted by the gut microbiome. This termite-associated Blattabacterium genome is ~8% smaller than cockroach-associated Blattabacterium genomes and lacks genes underlying vitamin and essential amino acid biosynthesis. Furthermore, the M. darwiniensis gut microbiome membership is more consistent between individuals and includes specialized termite gut-associated bacteria, unlike the more variable membership of cockroach gut microbiomes. The M. darwiniensis Blattabacterium genome may reflect relaxed selection for some of its encoded functions, and the loss of this endosymbiont in all remaining termite genera may result from its replacement by a functionally complementary gut microbiota.  相似文献   

12.
All examined species of cockroaches have been shown to harbour intracellular bacteria in specialized cells (bacteriocytes) of the fat body. In termites, bacteria in specialized cells have been observed only in Mastotermes darwiniensis (Isoptera: Mastotermitidae). All of these bacteria have been assigned to the same eubacterial lineage, with the bacteria of M. darwiniensis as the sister group to the cockroach bacteria. While the main steps of the life cycle of cockroach bacteria have been described, little is known about the bacteria of M. darwiniensis. More specifically, no data are available on their behaviour during the development of this termite. Using both optical and electron microscopy methods, we examined embryos of M. darwiniensis at different developmental stages. Our results show that the integration of bacteria during the development of M. darwiniensis is implemented in the same way as in cockroaches. In particular, we observed the aggregation of a large amount of bacteria in a single mass in the yolk sac, with vitellophage-associated bacterial lysis. In cockroaches, a similar process has been described in detail for Periplaneta americana (Blattaria: Blattidae), where the bacterial mass is referred to as the transitory mycetome. The formation of a transitory mycetome could thus be regarded as an ancestral condition for cockroaches and termites.  相似文献   

13.
The amount of protocatechuic acid glucoside in the left colleterial gland changes with the reproductive cycle. Allatectomy, beheading and injection of actinomycin D cause inhibition of the accumulation of glucoside, but glucoside resumes to accumulate in the left colleterial gland with the reimplantation of corpora allata into the allatectomized cockroaches.
When 14C-glucose was injected in normal animals, radioactive glucoside was accumulated in the left colleterial gland whereas in the allatectomized cockroaches, it was not accumulated in the gland but was found abundantly in blood.
The level of protocatechuic acid glucoside synthetase activity of the fat body tissue and of the left colleterial gland was assayed. The enzyme activity in the left colleterial gland was not affected by allatectomy but that in the fat body was slightly affected.
The mechanism of accumulation of protocatechuic acid glucoside in the left colleterial gland and the endocrine control on the accumulation are discussed.  相似文献   

14.
Phylogeny of the Dictyoptera   总被引:4,自引:0,他引:4  
Abstract. Relationships among six key dictyopteran taxa (Mantodea; Blattodea (excluding Cryptocercidae); Cryptocercidae; Mastotermes darwiniensis , Termopsidae and Kalotermitidae [Isoptera]) are analysed based on seventy morphological, developmental and behavioural characters. The fossil record and the 'living fossil' genera Cryptocercus, Mastotermes and Archotermopsis are discussed in detail. Exact analysis of the character state matrix by implicit enumeration (Hennig86) resulted in one cladogram, strongly supporting Blattodea + Cryptocercidae as a sister group to Mantodea, with the Isoptera as a sister group to that complex. Arrangements within the termites are equivocal, with Termopsidae and Mastotermes darwiniensis possible as the relatively most primitive element of Isoptera.  相似文献   

15.
Cryptocercus cockroaches and lower termites harbour obligate, diverse and unique symbiotic cellulolytic flagellates in their hindgut that are considered critical in the development of social behaviour in their hosts. However, there has been controversy concerning the origin of these symbiotic flagellates. Here, molecular sequences encoding small subunit rRNA and glyceraldehyde-3-phosphate dehydrogenase were identified in the symbiotic flagellates of the order Trichonymphida (phylum Parabasalia) in the gut of Cryptocercus punctulatus and compared phylogenetically to the corresponding species in termites. In each of the monophyletic lineages that represent family-level groups in Trichonymphida, the symbionts of Cryptocercus were robustly sister to those of termites. Together with the recent evidence for the sister-group relationship of the host insects, this first comprehensive study comparing symbiont molecular phylogeny strongly suggests that a set of symbiotic flagellates representative of extant diversity was already established in an ancestor common to Cryptocercus and termites, was vertically transmitted to their offspring, and subsequently became diversified to distinct levels, depending on both the host and the symbiont lineages.  相似文献   

16.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

17.
Abstract.  The maize stemborer Sesamia nonagrioides glues its egg masses under the leaf sheaths or ear bracts using colleterial gland secretion. In spite of such concealed oviposition sites, these eggs are parasitized by Telenomus busseolae. The colleterial glands of S. nonagrioides are investigated as a possible source of the host-recognition kairomone for T. busseolae . This secretion, applied on glass beads, elicits intense antennal drumming and oviposition probing behaviour in the parasitoid. Through an histochemical study, neutral and acid glycoconjugates are identified as components of the secretion. Finally, using ultrastructural techniques, the colleterial glands are described and classified as comprising class 3 secretory cells.  相似文献   

18.
白蚁信息素研究进展   总被引:1,自引:0,他引:1  
程冬保 《昆虫学报》2013,56(4):419-426
白蚁是最古老的社会性昆虫, 其社会性的维持需要信息素的相互作用。本文回顾了近年来国内外白蚁信息素研究的最新进展, 内容涉及白蚁踪迹信息素、 性信息素、 告警信息素和促食信息素的功能、 化学成分及产生信息素的外分泌腺。白蚁分泌信息素的腺体主要有背板腺、 腹板腺、 后腹板腺、 额腺和唾腺。绝大多数白蚁信息素是挥发性物质。白蚁在化学通讯上存在节俭策略, 即同一种化合物由不同的白蚁种类的不同外分泌腺分泌, 可具有不同的功能。总结了各类信息素在白蚁物种间、 同一物种的品级间和性别间的异同和作用方式, 强调了白蚁信息素的反应阈值、 最佳浓度、 有效期和物种特异性对其功能的影响。目前对白蚁信息素的研究尚处于起步阶段, 其研究成果对等翅目系统发育研究和白蚁防治具有重要的意义。文章最后展望了白蚁信息素在白蚁防治上的应用前景。  相似文献   

19.
Protection against predators and competitors is one of the main concerns of termite colonies, which developed a specialised defensive caste, the soldiers. However, soldiers are rare or even missing in several lineages of termites, while workers often develop new defence strategies especially in soil-feeding species. Here, we describe the morphology and ultrastructure of the autothysis-associated glands of Neocapritermes taracua workers and report their age-related changes in structure. The defensive glands of N. taracua workers consist of a pair of labial and a pair of crystal glands, whose secretions mix together through autothysis. Autothysis always occurs at the line of weakness connecting the anterior parts of the crystal-bearing pouches. The crystal glands consist of groups of bicellular secretory units (secretory and corresponding canal cells) which secrete the blue crystal material into external pouches. Their secretory activity is maximal in the middle of worker life, and is considerably lower in very young and old workers. The labial glands are composed of two types of secretory cells: the central and the parietal cells. While the central cells are developed similarly to other termites and secrete proteinaceous secretion into labial gland ducts, the parietal cells develop proteinaceous granules which may eventually bud off the cells. The secretory function of parietal cells is so far unique to N. taracua and differs from other termite species in which they are only responsible of water uptake by acini. The defensive device of N. taracua is truly exceptional as it involves a new gland and a previously undescribed function for parietal cells, being a remarkable example of evolution of morphological innovation.  相似文献   

20.
Sulfate-reducing bacteria (SRB) from termites have been assigned to the genus Desulfovibrio. Desulfovibrio intestinalis lives in the gut of the Australian termite Mastotermes darwiniensis. For the first time we were able to enrich and identify a sulfate-reducing bacterium from the gut of the rose-chafer Pachnoda marginata, which showed the highest 16S rDNA sequence identity (93%) to Desulfovibrio intestinalis and Desulfovibrio strain STL1. Compared to Mastotermes darwiniensis (1x10(7) cells of SRB per ml gut contents), sulfate-reducing bacteria occurred in higher numbers in the gut contents of Pachnoda marginata reaching cell titers of up to 2x10(8) cells per ml gut contents. In vitro sulfate reduction rates were determined with SRB from the gut contents of the termite Mastotermes darwiniensis and the beetle Pachnoda marginata. Due to the higher cell titer, the sulfate reduction rate of Pachnoda marginata was 10(4) nmolxh-1xml-1 and therefore, 21 times higher than that of Mastotermes darwiniensis. In addition, we detected in vivo sulfate reduction in Mastotermes darwiniensis, which indicates that sulfate reducers play an active role in the sulfur metabolism in the termite gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号