首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
营养胁迫对雨生红球藻虾青素累积的影响   总被引:19,自引:4,他引:15  
通过改变营养条件可诱导雨生红球藻积累虾青素.氮限制实验表明,色素的累积速率与原初氮浓度成反比,也与细胞分裂速率负相关,当BBM培养基中的NaNO3浓度减半时(0.13g@L-1),对细胞增殖及色素累积相对都有利.在高光强下,进一步进行氮、磷饥饿,红球藻细胞分裂明显受抑,但色素的累积作用增强,培养9d,细胞内次生类胡萝卜素的含量分别比对照组提高141.0%和60.5%,色素的累积高峰也比对照组提前2-4d.提高NaCl浓度至0.8%时的盐胁迫,不能诱导虾青素的形成.实验结果还表明,色素的累积与厚壁孢子的形成并不完全相关,游动细胞也能大量积累红色色素.  相似文献   

2.
雨生红球藻在不同培养基的生长比较   总被引:2,自引:1,他引:1  
刘健晖  李爱芬 《生态科学》2006,25(2):113-115,121
研究了雨生红球藻(Haematococcuspluvialis)3个不同品系CH-1、UTEX-16和CS-321分别在3种不同培养基BBM、BG-11、JM中的生长情况。结果表明:在3种培养基中,CH-1的最高细胞密度、生物量和虾青素含量都要高于另外2株雨生红球藻,其中以BBM培养的CH-1生长情况最好,其最终营养细胞密度可达到59.8×104cell?mL-1,干重为0.527g?L-1,细胞密度最高时虾青素含量为3.55mg?L-1。  相似文献   

3.
雨生红球藻营养细胞的虾青素累积   总被引:18,自引:0,他引:18  
接种于缺氮培养基的雨生红球藻。当置于光强为10—12klx,温度25℃±1.5℃条件下培养时,营养细胞迅速由绿色变成红色。接种4d时,运动细胞占细胞总数的90%,细胞内的虾青素含量(33.0pg/cell)占最终色素累积量的(60.0pg/cell)的55%。接种6d时,虾青素含量已占最终累积量的75%。电镜观察显示,红色的运动细胞除细胞质的大部分区域充满色素颗粒外,细胞的形态结构与绿色细胞基本一致。实验还表明,当接种物置于低光(0.5—1.0klx)下培养时,营养细胞仍有色素沉积,但累积缓慢。当只有高光胁迫(10—12klx,完全培养基培养)时,营养细胞转变成厚壁孢子后(5d后),才大量积累色素。  相似文献   

4.
氮胁迫对雨生红球藻色素积累与抗氧化系统的影响   总被引:1,自引:0,他引:1  
选用雨生红球藻CG-06为试验藻株,以BBM为基础培养基,分别设置了0、13.7、27.5、41.2mg·L-1四个硝态氮浓度梯度,分析并探讨在不同硝态氮浓度条件下雨生红球藻生长、生理特性、细胞内主要色素含量的变化以及抗氧化酶活性。结果表明:细胞中色素的积累量和积累速率与初始硝态氮浓度成反比,与抗氧化酶活性呈负相关。缺氮时,培养到第3天的藻细胞中虾青素含量达到4.95μg·mg-1,而对照组在培养到第9天的细胞中才开始产生虾青素,而且在整个培养周期内细胞中的虾青素最大含量仅为4.17μg·mg-1。酶活测定结果显示,虾青素含量较高的红色细胞中,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)的活性明显高于绿色细胞,且GSH-Px活性最高。研究表明,雨生红球藻可能有两种过氧化防御机制,绿色细胞阶段以抗氧化酶作用为主,在培养后期启动虾青素保护机制,两种机制具有协同作用。  相似文献   

5.
雨生红球藻的紫外、激光复合诱变育种   总被引:13,自引:4,他引:9  
用紫外线和激光复合诱变生产虾青素的雨生红球藻,以适宜条件下的生长速率和亚适宜条件下的虾青素累积能力为筛选指标。结果表明,与原始出发株比,紫外线诱变后,色青累积速率提高37.8%,但生长速率有所下降,紫外线,激光复合诱变结果,生长速率提高11.1%,培养1个月时虾青素累积量提高52.2%。电镜观察结果表明,激光可刺激叶绿体发育,从而改善了紫外线诱变后的生长抑制状况,展示复合诱变是筛选高产虾青素藻株的有效方法。  相似文献   

6.
以雨生红球藻Haematococcus pluvialis CG-06为实验材料,分析测定在正常培养周期内藻细胞主要色素的变化动态、光合生理特性,以及培养基中硝态氮的含量。结果表明,雨生红球藻在绿色细胞阶段的主要色素包括:叶绿素、叶黄素、β-胡萝卜素,培养至红色细胞阶段增加了角黄素、海胆酮、虾青素单酯及双酯等次生类胡萝卜素。硝态氮浓度在培养初期下降迅速,第3 d降至4.875 mg/L,下降了85.3%,至第7 d下降为0.169 mg/L。雨生红球藻培养至第7 d时,细胞中开始检测出虾青素,含量为0.159 mg/g,此时虾青素合成速度较快,至第11 d虾青素含量上升为1.68 mg/g,在虾青素合成初期β-胡萝卜素的含量下降。藻细胞的光合速率、呼吸速率和NPQ在培养前期比较稳定,第7 d细胞光合速率开始下降,而呼吸速率和NPQ则上升,在整个培养周期中,藻细胞的Fv/Fm变化不明显。  相似文献   

7.
氮、磷营养对雨生血球藻绿色细胞生长的影响   总被引:1,自引:1,他引:0  
采用BBM培养基,以雨生血球藻(Haematococcus pluvialis CG-11)为研究材料,通过测定细胞生长速率、叶绿素和类胡萝卜素含量、生物量和虾青素含量,探讨氮、磷营养对雨生血球藻营养细胞生长的影响.结果显示:H.pluvialis CG-11生长的适宜氮源形式是NaNO3和NH4NO3;适宜H.pluvialis CG-11生长的氮浓度为41.2mg·L-1,磷浓度为5.3~53.3mg·L-1.  相似文献   

8.
以丝状绿藻枝鞘藻(Oedocladium sp.)为实验材料,研究在100、300μmol·m-2·s-1和双侧300μmol·m-2·s-13种光强以及1、3、9、18 mmol/L 4种初始氮浓度下,两步法培养(第12 d时实验组分别更换为无氮培养基及加盐培养基)对枝鞘藻生长、油脂和虾青素积累的影响。结果显示:枝鞘藻最大生物量在双侧300μmol·m-2·s-1光强,18 mmol/L初始氮浓度更换为无氮培养基的条件下达到,为9.61 g/L;最高虾青素含量和最高油脂含量在双侧300μmol·m-2·s-1光强,3 mmol/L初始氮浓度更换为加盐培养基条件下达到,分别达到干重的1.62%和51.19%。研究结果表明高光条件有利于枝鞘藻的生长,双侧高光条件下低氮浓度更换为加盐培养基最有利于枝鞘藻虾青素和油脂的积累。  相似文献   

9.
【背景】雨生红球藻是天然虾青素的最佳来源,广泛应用于虾青素的工业化生产。【目的】探究外源添加不同浓度的2,6-二叔丁基对甲酚(Butylated hydroxytoluene,BHT)对雨生红球藻虾青素积累的影响,以期建立BHT提高雨生红球藻虾青素产量的技术体系。【方法】选用不含硝态氮的BBM培养基,辅以强光照,培养雨生红球藻(Haematococcus pluvialis)LUGU,测试不同浓度BHT对雨生红球藻生物量、虾青素含量、活性氧、抗氧化系统和虾青素合成相关酶基因的影响。【结果】在0-3 mg/L BHT范围内,2 mg/L BHT对雨生红球藻虾青素积累的促进效果最佳,达到31.66 mg/g。2 mg/L BHT有效降低了雨生红球藻内的活性氧水平,增加了细胞内NO水平,提高了藻细胞内过氧化氢酶(Catalase,CAT)、过氧化物酶(Peroxidase,POD)和超氧化物歧化酶(Superoxidedismutase,SOD)活性以及谷胱甘肽(Glutathione,GSH)的含量,诱导了虾青素合成关键酶基因chy和lcy的高效表达。【结论】非生物胁迫条件下,外源添加适量的BHT能促进雨生红球藻中虾青素的积累,且与藻细胞内的信号分子活性氧(Reactive oxygen species,ROS)、NO水平及虾青素合成相关基因的表达调控相关。  相似文献   

10.
UV-B辐射对雨生红球藻生长和类胡萝卜素含量的影响   总被引:1,自引:0,他引:1  
以BG11培养基,对雨生红球藻进行了室内培养,研究了增强UV-B辐射对雨生红球藻生长速率和虾青素含量的影响.室内培养的条件是UV-B辐射强度为0.1J·m-2·S-1,0.2J·m-2·S-1, 0.3J·m-2·S-1, 光照强度为60 μmoL·m-2·S-1(昼夜比为12 h:12 h),温度为20~26℃.测定了培养液细胞数目、叶绿素a、类胡萝卜素的含鼍,并对雨生红球藻进行了显微结构观察.结果显示在室内培养雨生红球藻增加UV-B辐射,能够提高其细胞内虾青素的含量,其显微结构显示类胡萝卜素颗粒明显增加的现象.本研究目的是在室内培养雨生红球藻提高虾青素产量的方法.  相似文献   

11.

In the present study, the effects of four different culture media on the growth, astaxanthin production and morphology of Haematococcus pluvialis LUGU were studied under two-step cultivation. The interactions between astaxanthin synthesis and secondary messengers, reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPK) were also investigated. In the first green vegetative cell stage, maximal biomass productivity (86.54 mg L−1 day−1) was obtained in BBM medium. In the induction stage, the highest astaxanthin content (21.5 mg g−1) occurred in BG-11 medium, which was higher than in any other media. The expressions of MAPK and astaxanthin biosynthetic genes in BG-11 were higher than in any other media, whereas the ROS content was lower. Biochemical and physiological analyses suggested that the ROS, MAPK and astaxanthin biosynthetic gene expression was involved in astaxanthin biosynthesis in H. pluvialis under different culture media conditions. This study proposes a two-step cultivation strategy to efficiently produce astaxanthin using microalgae.

  相似文献   

12.
Astaxanthin extracted from green algae is desirable in the food and pharmaceutical industries due to its antioxidant properties. The green unicellular clear water microalga Haematococcus pluvialis has a high production rate of astaxanthin; indeed, it contains more than 80% astaxanthin content in its cells. This remarkable astaxanthin production is commonly obtained under stress conditions such as nutrient deficiency (N or P), high NaCl concentrations, variations of temperature, and other factors. In this vein, a great research effort has been oriented to determine optimal conditions for astaxanthin production by H. pluvialis.The objective of the present study was the analysis of environmental factors, such as light intensity, aeration and nutrients on the growth and astaxanthin production of H. pluvialis. Maximum growth of H. pluvialis obtained was 3.5x10(5) cells/ml in BBM medium at 28 degrees C under continuous illumination (177 micromol photon m(-2)s(-1)) of white fluorescent light, with continuous aeration (1.5 v.v.m.). Meanwhile, maximal astaxanthin production was 98 mg/g biomass in BAR medium with continuous illumination (345 micromol photon m(-2)s(-1)), with 1 g/l of sodium acetate and without aeration.  相似文献   

13.
The performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 microE/m2.s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L.d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L.d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells.  相似文献   

14.
The influence of the oxygen and glucose supply on primary metabolism (fermentation, respiration, and anabolism) and astaxanthin production in the yeast Phaffia rhodozyma was investigated. When P. rhodozyma grew under fermentative conditions with limited oxygen or high concentrations of glucose, the astaxanthin production rate decreased remarkably. On the other hand, when the yeast grew under aerobic conditions, the astaxanthin production rate increased with increasing oxygen uptake. A kinetic analysis showed that the respiration rate correlated positively with the astaxanthin production rate, whereas there was a negative correlation with the ethanol production rate. The influence of glucose concentration at a fixed nitrogen concentration with a high level of oxygen was then investigated. The results showed that astaxanthin production was enhanced by an initial high carbon/nitrogen ratio (C/N ratio) present in the medium, but cell growth was inhibited by a high glucose concentration. A stoichiometric analysis suggested that astaxanthin production was enhanced by decreasing the amount of NADPH required for anabolism, which could be achieved by the repression of protein biosynthesis with a high C/N ratio. Based on these results, we performed a two-stage fed-batch culture, in which cell growth was enhanced by a low C/N ratio in the first stage and astaxanthin production was enhanced by a high C/N ratio in the second stage. In this culture system, the highest astaxanthin production, 16.0 mg per liter, was obtained.  相似文献   

15.
Continuous cultivation of Haematococcus pluvialis under moderate nitrogen limitation represents a straightforward strategy, alternative to the classical two-stage approach, for astaxanthin production by this microalga. Performance of the one-step system has now been validated for more than 40 combinations of dilution rate, nitrate concentration in the feed medium, and incident irradiance, steady state conditions being achieved and maintained in all instances. Specific nitrate input and average irradiance were decisive parameters in determining astaxanthin content of the biomass, as well as productivity of the system. The growth rate of the continuous photoautotrophic cultures was a hyperbolic function of average irradiance. As long as specific nitrate input was above the threshold value of 2.7 mmol/g day, cells performed green and astaxanthin was present at basal levels only. Below the threshold value, under moderate nitrogen limitation conditions, astaxanthin accumulated to reach cellular levels of up to 1.1% of the dry biomass. Increasing irradiance resulted in enhancement of astaxanthin accumulation when nitrogen input was limiting, but never under nitrogen sufficiency. Mean daily productivity values of 20.8 +/- 2.8 mg astaxanthin/L day (1.9 +/- 0.3 g dry biomass/L day) were consistently achieved for a specific nitrate input of about 0.8 mmol/g day and an average irradiance range of 77-110 microE/m(2) s. Models relating growth rate and astaxanthin accumulation with both average irradiance and specific nitrate input fitted accurately experimental data. Simulations provided support to the contention of achieving efficient production of the carotenoid through convenient adjustment of the determining parameters, and yielded productivity estimates for the one-step system higher than 60 mg astaxanthin/L day. The demonstrated capabilities of this production system, as well as its product quality, made it a real alternative to the current two-stage system for the production of astaxanthin-rich biomass.  相似文献   

16.
The green microalga Haematococcus pluvialis was cultured with different concentrations of NaNO(3) to determine the effect on cell growth and astaxanthin accumulation. The optimum nitrate concentration to obtain astaxanthin and to avoid the cessation of cell division was 0.15 g/l NaNO(3). The ratio chlorophyll a/total carotenoids proved a good physiological indicator of nitrogen deficiency in the cell. The effect of different carbon sources, malonate and acetate, on astaxanthin accumulation was also studied; up to 13 times more carotenoids per cell were accumulated in cultures with malonate than in cultures without this compound. The pigment analysis was performed by a new low toxicity HPLC method capable of separating chlorophylls a and b, carotenes and xanthophylls in a short-period of time, using low volumes of solvents and with an economical price. With this method even echinenone was separated, which had been unsuccessful by any other method.  相似文献   

17.
A two-stage culture system was established for the production of astaxanthin from Haematococcus pluvialis. In a first stage green vegetative cells were produced in semicontinuous cultures maintained with daily renewal rates between 10 and 40%. The steady-state cell density decreased with increasing renewal rates. Highest cell productivity, 64 x 10(6) cells l(-1) day(-1) was obtained with a daily renewal rate of 20%. In a second stage the harvested cultures were submitted to high light (240 micromol photon m(-2) s(-1)) under batch conditions for 15 days in order to stimulate the transition to the aplanospore stage and the accumulation of astaxanthin. No decrease in cell density was recorded during the induction period in any of the cultures. Cultures obtained at high renewal rates continued growing during the induction period and no astaxanthin was accumulated until all nitrogen in the media had been consumed. The final concentration of astaxanthin was inversely correlated to the growth rate at which first-stage cultures were maintained. Optimal renewal rate for maximal astaxanthin production depended on the duration of the induction period. After a 12-day induction period the highest astaxanthin production, 5.8 mg l(-1) of semi-continuous culture day -1, was obtained with cultures maintained at a renewal rate of 20%. When the induction period was increased to 15 days maximal astaxanthin productivity, 9.6 mg l(-1) of semi-continuous culture day -1, was obtained from cultures maintained at a renewal rate of 40% despite the much lower astaxanthin concentration achieved in these cultures. Results demonstrate the feasibility of semi-continuous cultivation of H. pluvialis for the two-stage production of astaxanthin.  相似文献   

18.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号