首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare) was identified using clone banks that cover the chloroplast and mitochondrial genomes. The mitochondrial fragments that were homologous to chloroplast DNA were mapped and sequenced. The nucleotide sequences around the termini of integrated chloroplast sequences in the rice mtDNA revealed no common sequences or structures that might enhance the transfer of DNA. Sixteen chloroplast sequences, ranging from 32 bases to 6.8 kb in length, were found to be dispersed throughout the rice mitochondrial genome. The total length of these sequences is equal to approximately 6% (22 kb) of the rice mitochondrial genome and to 19% of the chloroplast genome. The transfer of segments of chloroplast DNA seems to have occurred at different times, both before and after the divergence of rice and maize. The mitochondrial genome appears to have been rearranged after the transfer of chloroplast sequences as a result of recombination at these sequences. The rice mitochondrial DNA contains nine intact tRNA genes and three tRNA pseudogenes derived from the chloroplast genome.  相似文献   

2.
Plants contain large mitochondrial genomes, which are several times as complex as those in animals, fungi or algae. However, genome size is not correlated with information content. The mitochondrial genome (mtDNA) of Arabidopsis specifies only 58 genes in 367 kb, whereas the 184 kb mtDNA in the liverwort Marchantia polymorpha codes for 66 genes, and the 58 kb genome in the green alga Prototheca wickerhamii encodes 63 genes. In Arabidopsis’ mtDNA, genes for subunits of complex II, for several ribosomal proteins and for 16 tRNAs are missing, some of which have been transferred recently to the nuclear genome. Numerous integrated fragments originate from alien genomes, including 16 sequence stretches of plastid origin, 41 fragments of nuclear (retro)transposons and two fragments of fungal viruses. These immigrant sequences suggest that the large size of plant mitochondrial genomes is caused by secondary expansion as a result of integration and propagation, and is thus a derived trait established during the evolution of land plants.  相似文献   

3.
Lilly JW  Havey MJ 《Genetics》2001,159(1):317-328
Closely related cucurbit species possess eightfold differences in the sizes of their mitochondrial genomes. We cloned mitochondrial DNA (mtDNA) fragments showing strong hybridization signals to cucumber mtDNA and little or no signal to watermelon mtDNA. The cucumber mtDNA clones carried short (30-53 bp), repetitive DNA motifs that were often degenerate, overlapping, and showed no homology to any sequences currently in the databases. On the basis of dot-blot hybridizations, seven repetitive DNA motifs accounted for >13% (194 kb) of the cucumber mitochondrial genome, equaling >50% of the size of the Arabidopsis mitochondrial genome. Sequence analysis of 136 kb of cucumber mtDNA revealed only 11.2% with significant homology to previously characterized mitochondrial sequences, 2.4% to chloroplast DNA, and 15% to the seven repetitive DNA motifs. The remaining 71.4% of the sequence was unique to the cucumber mitochondrial genome. There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs. Our results demonstrate that the expanded cucumber mitochondrial genome is in part due to extensive duplication of short repetitive sequences, possibly by recombination and/or replication slippage.  相似文献   

4.
The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.  相似文献   

5.
Sequence and comparative analysis of the maize NB mitochondrial genome   总被引:21,自引:0,他引:21       下载免费PDF全文
The NB mitochondrial genome found in most fertile varieties of commercial maize (Zea mays subsp. mays) was sequenced. The 569,630-bp genome maps as a circle containing 58 identified genes encoding 33 known proteins, 3 ribosomal RNAs, and 21 tRNAs that recognize 14 amino acids. Among the 22 group II introns identified, 7 are trans-spliced. There are 121 open reading frames (ORFs) of at least 300 bp, only 3 of which exist in the mitochondrial genome of rice (Oryza sativa). In total, the identified mitochondrial genes, pseudogenes, ORFs, and cis-spliced introns extend over 127,555 bp (22.39%) of the genome. Integrated plastid DNA accounts for an additional 25,281 bp (4.44%) of the mitochondrial DNA, and phylogenetic analyses raise the possibility that copy correction with DNA from the plastid is an ongoing process. Although the genome contains six pairs of large repeats that cover 17.35% of the genome, small repeats (20-500 bp) account for only 5.59%, and transposable element sequences are extremely rare. MultiPip alignments show that maize mitochondrial DNA has little sequence similarity with other plant mitochondrial genomes, including that of rice, outside of the known functional genes. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly three-fourths of the maize NB mitochondrial genome is still of unknown origin and function.  相似文献   

6.

Background

A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt) on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1) into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split.

Principal Findings

Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2) with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000–485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively.

Conclusions

This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The dN/dS dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective population size and possessed genetic diversity comparable with those of chimpanzee and gorilla.  相似文献   

7.
The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon–intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed.  相似文献   

8.
The mitochondrial genomes of normal fertile and male-sterile (Owen CMS) cytoplasms of sugar beet are highly rearranged relative to each other and dozens of inversional recombinations and other reshuffling events must be postulated to interconvert the two genomes. In this paper, a comparative analysis of the entire nucleotide sequences of the two genomes revealed that most of the inversional recombinations involved short repeats present at their endpoints. Attention was also focused on the origin of the Owen CMS-unique mtDNA regions, which occupy 13.6% of the Owen genome and are absent from the normal mtDNA. BLAST search was performed to assign the sequences, and as a result, 7.6% of the unique regions showed significant homology to previously determined mitochondrial sequences, 17.9% to nuclear DNA, 4.6% to mitochondrial episomes, and 0.1% to plastid DNA. Southern blot analysis revealed that additional sequences of nuclear origin may be included within the unique regions. We also found that the copies of many short repeat families are scattered throughout the unique regions. This suggests that, in addition to the incorporation of foreign DNAs, extensive duplication of short repetitive sequences and continued scrambling of mtDNA sequences may be implicated in the generation of the Owen CMS-unique regions.  相似文献   

9.
Summary The organization of the mitochondrial genome in somatic hybrids and cybrids regenerated following fusion of protoplasts from cultivated tomato, Lycopersicon esculentum, and the wild species, L. Pennellii, was compared to assess the role of the nuclear genotype on the inheritance of organellar genomes. No organellar-encoded traits were required for the recorvery of either somatic hybrids or cybrids. The organization of the mitochondrial genome was characterized using Southern hybridization of restriction digestions of total DNA isolated from ten cybrids and ten somatic hybrids. A bank of cosmid clones carrying tomato mitochondrial DNA was used as probes, as well as a putative repeated sequence from L. pennellii mitchondrial DNA. The seven cosmids used to characterize the mitochondrial genomes are predicted to encompass at least 60% of the genome. The frequency of nonparental organizations of the mitochondrial genome was highest with a probe derived from a putative repeat element from the L. pennellii mitochondrial DNA. There was no difference in the average frequency of rearranged mitochondrial sequences in somatic hybrids (12%) versus cybrids (10%), although there were individual cybrids with a very high frequency of novel fragments (30%). The frequency of tomato-specific mtDNA sequences was higher in cybrids (25%) versus somatic hybrids (12%), suggesting a nuclear-cytoplasmic interaction on the inheritance of tomato mitochondrial sequences.  相似文献   

10.
The mitochondrial genome of grape (Vitis vinifera), the largestorganelle genome sequenced so far, is presented. The genomeis 773,279 nt long and has the highest coding capacity amongknown angiosperm mitochondrial DNAs (mtDNAs). The proportionof promiscuous DNA of plastid origin in the genome is also thelargest ever reported for an angiosperm mtDNA, both in absoluteand relative terms. In all, 42.4% of chloroplast genome of Vitishas been incorporated into its mitochondrial genome. In orderto test if horizontal gene transfer (HGT) has also contributedto the gene content of the grape mtDNA, we built phylogenetictrees with the coding sequences of mitochondrial genes of grapeand their homologs from plant mitochondrial genomes. Many incongruentgene tree topologies were obtained. However, the extent of incongruencebetween these gene trees is not significantly greater than thatobserved among optimal trees for chloroplast genes, the commonancestry of which has never been in doubt. In both cases, weattribute this incongruence to artifacts of tree reconstruction,insufficient numbers of characters, and gene paralogy. Thisfinding leads us to question the recent phylogenetic interpretationof Bergthorsson et al. (2003, 2004) and Richardson and Palmer(2007) that rampant HGT into the mtDNA of Amborella best explainsphylogenetic incongruence between mitochondrial gene trees forangiosperms. The only evidence for HGT into the Vitis mtDNAfound involves fragments of two coding sequences stemming fromtwo closteroviruses that cause the leaf roll disease of thisplant. We also report that analysis of sequences shared by bothchloroplast and mitochondrial genomes provides evidence fora previously unknown gene transfer route from the mitochondrionto the chloroplast.  相似文献   

11.
12.
In analytical review is considered the possibility of the insertion of mitochondrial DNA (mtDNA) fragments into the nuclear genome of cells, exposed ionizing radiation (IR). Many studies show that integration fragment mtDNA in nuclear genome, as well as its fastening as NUMT-pseudogenes, proceed at ancient periods of the evolutions not only, but also at more late periods. The number of the investigations shows that under influence endogenous reactive oxygen species, chemical agent, UV-light and IR mtDNA is damaged with greater frequency, than nucleus DNA. Furthermore, the repair systems in mitochondria are low efficiency. In irradiated by IR cells mtDNA fragments can transition from the mitochondria to the cytoplasm. The binding of mtDNA fragment to a complex with proteins provides them the protection from nuclease destroying. Possibly, at such safe condition they and are carried to nucleus. At inductions of DNA double-strand breaks (under the action of IR and activated their reparation) mtDNA fragments may be inserted to nuclear genome. Such integration of mtDNA to nuclear genome, with shaping NUMT-pseudogenes de novo, may be proceed in irradiated cells in the course of the reparations DNA double-strand breaks by the nonhomologous end-joining pathway. These insertions of mtDNA can cardinally change the structure of nuclear genomes in area of their introduction and render the essential influence upon the realization of genetic information. Available information in literature also allows to suppose that integration mtDNA in nuclear genome can proceed and at raised genomic instability observed in cells at post radiation period. It in equal extent pertains and to malignant cells with raised by instability mitochondrial and nuclear genomes. As the most efficient agent, initiating insertion fragment mtDNA in nuclear genome, is considered ionizing radiation.  相似文献   

13.
Venkatesh B  Dandona N  Brenner S 《Genomics》2006,87(2):307-310
Contrary to previous observations that fish genomes are devoid of nuclear mitochondrial pseudogenes, a genome-wide survey identified a large number of "recent" and "ancient" nuclear mitochondrial DNA fragments (Numts) in the whole-genome sequences of the fugu (Takifugu rubripes), Tetraodon nigroviridis, and zebrafish (Danio rerio). We have analyzed the latest assembly (v4.0) of the fugu genome and show that, like the Anopheles genome, the fugu nuclear genome does not contain mitochondrial pseudogenes. Fugu assembly v4.0 contains a single scaffold representing the near complete sequence of the fugu mitochondria. The "recent" Numts identified by the previous study in fugu assembly v2.0 are in fact shotgun sequences of mitochondrial DNA that were misassembled with the nuclear sequences, whereas the "ancient" Numts appear to be the result of spurious matches. It is likely that the Numts identified in the genomes of Tetraodon and zebrafish are also similar artifacts. Shotgun sequences of whole genomes often include some mitochondrial sequences. Therefore, any Numts identified in shotgun-sequence assemblies should be verified by Southern hybridization or PCR amplification.  相似文献   

14.
Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes.  相似文献   

15.
At least 0.08% of the Apis mellifera nuclear genome contains sequences that originated from mitochondria. These nuclear copies of mitochondrial sequences (numts) are scattered all over the honeybee chromosomes and have originated by multiple independent insertions of mitochondrial DNA (mtDNA) as evident by phylogenetic analysis. Apart from original insertions, moderate duplications of numts also contributed to the present pattern and distribution of mitochondrial sequences in honeybee chromosomes. Assimilation of mitochondrial genes in the nuclear genome is mediated by extensive fragmentations of the original inserts. Replication slippage seems to be a major mechanism by which small sequences are inserted or deleted from mtDNA destined to nucleus. Most of the honeybee numts (84%) are located in the nongenic regions. The majority (94%) of the numts that are located in predicted nuclear genes have originated from mitochondrial genes coding for cytochrome oxidase and NADH dehydrogenase subunits. On the other hand, the mitochondrial rRNA or tRNA gene sequences are predominantly (88%) located in nongenic regions of the genome. Evidences also support for exertion of purifying selection on numts located in specific genes. Comparative analysis of numts of European, African, and Africanized honeybees suggests that numt evolution in A. mellifera is probably not demarked by speciation time frame but may be a continuous and dynamic process.  相似文献   

16.
Nuclear genotype affects mitochondrial genome organization of CMS-S maize   总被引:7,自引:0,他引:7  
Summary A WF9 strain of maize with the RD subtype of the S male-sterile cytoplasm (CMS-S) was converted to the inbred M825 nuclear background by recurrent backcrossing. The organization of the mitochondrial genomes of the F1 and succeeding backcross progenies was analyzed and compared with the progenitor RD-WF9 using probes derived from the S1 and S2 mitochondrial episomes, and probes containing the genes for cytochrome c oxidase subunit I (coxI), cytochrome c oxidase subunit II (coxII) and apocytochrome b (cob). Changes in mitochondrial DNA (mtDNA) organization were observed for S1-, S2-, and coxI-homologous sequences that involve loss of homologous restriction enzyme fragments present in the RD-WF9 progenitor. With the coxI probe, the loss of certain fragments was accompanied by the appearance of a fragment not detectable in the progenitor. The changes observed indicate the effect of the nuclear genome on the differential replication of specific mitochondrial subgenomic entities.  相似文献   

17.
Organization and variation of angiosperm mitochondrial genome   总被引:2,自引:0,他引:2  
The mitochondrial genomes of angiosperms are the largest mitochondrial genomes so far reported and are highly variable in size among plant species. The comparative analysis of the angiosperm mitochondrial genomes at the nucleotide level has now become feasible for addressing long-standing questions, owing to the publication of five dicot and three monocot genomes. Whereas the identified genes and introns are rather well conserved, intergenic regions are highly variable in sequence, even between two close relatives. Promiscuous DNA and horizontally transferred sequence constitute part of the intergenic regions, but the origin of the majority of these regions is unknown. On the other hand, duplication and extensive rearrangement of preexisting sequences may be one of the explanations for the occurrence of unknown sequences. Functional aspects of the mitochondrial genome, such as RNA editing and expression of unique open reading frames (ORFs), can be changed under certain nuclear genotypes.  相似文献   

18.
何芳  姜爱兰  李神斌  吴运梅  王国秀 《昆虫学报》2009,52(10):1083-1089
为完善昆虫病原索科线虫线粒体基因组全序列数据库, 更系统地研究其基因组特征和系统演化规律, 进而为发挥该线虫生防潜力打下基础, 我们开展了中华卵索线虫Ovomermis sinensis线粒体全基因组的研究。该研究通过线粒体基因组滚环复制及酶切图谱, 揭示了中华卵索线虫线粒体基因组具有种内遗传多态性, 即群体中单体线虫具有独特的酶切条带, 且条带累加之和变化范围较大, 为16.5~24.5 kb。为进一步了解线粒体基因组多态性特征及产生的分子机制, 采用两步长PCR方法对2条代表性成虫线粒体基因组进行了测序及拼接, 得其全长分别为18 864和16 777 bp。对这2条序列的比对表明, 线粒体基因组中位于ND2和ND4之间的可变区域, 不仅基因排列顺序不同, 且存在ND3基因重复现象, 这是导致中华卵索线虫线粒体基因组呈现多态性的主要原因。通过对以上研究结果的分析及与GenBank中已有的6种索科线虫线粒体基因组序列进行比对, 概括出其线粒体基因组基本特点: ①线粒体基因排列顺序各不相同;②部分线虫线粒体基因存在重复现象, 且重复次数不同;③线粒体基因组大小存在很大差异。  相似文献   

19.
B L Ward  R S Anderson  A J Bendich 《Cell》1981,25(3):793-803
The genome sizes of mitochondrial DNA from darkgrown (etiolated) shoots of several higher plants were determined by reassociation kinetics and restriction analysis. Kinetic complexities obtained from reassociation kinetics measured spectrophotometrically indicate a mitochondrial genome size of 1600 Md for muskmelon, 1000 Md for cucumber, 560 Md for zucchini squash and 220 Md for watermelon (four species in the cucurbit family), as well as 240 Md for pea and 320 Md for corn. The kinetic curves also reveal the presence (except in corn) of sequences of a few magadaltons of complexity, reiterated about 10-50 times and representing 5%- 10% of the DNA in each mitochondrial genome. Molecular weight summation of fragments resulting from digestion with restriction endonucleases Sal I and Kpn I give genome size estimates similar to those obtained from reassociation kinetics, except for muskmelon and cucumber, for which the large number of fragments of similar size limits our estimate to at least 500 Md. The number of mitochondrial genomes per diploid cell is estimated to be about 110 to 140 for muskmelon, zucchini and watermelon. We consider the possible evolutionary mechanisms by which the mitochondrial genome has grown within the cucurbit family and the possible reasons for the existance of a seven to eight-fold range in mitochondrial genome size among such closely related species.  相似文献   

20.
Whole‐genome‐shotgun (WGS) sequencing of total genomic DNA was used to recover ~1 Mbp of novel mitochondrial (mtDNA) sequence from Pinus sylvestris (L.) and three members of the closely related Pinus mugo species complex. DNA was extracted from megagametophyte tissue from six mother trees from locations across Europe, and 100‐bp paired‐end sequencing was performed on the Illumina HiSeq platform. Candidate mtDNA sequences were identified by their size and coverage characteristics, and by comparison with published plant mitochondrial genomes. Novel variants were identified, and primers targeting these loci were trialled on a set of 28 individuals from across Europe. In total, 31 SNP loci were successfully resequenced, characterizing 15 unique haplotypes. This approach offers a cost‐effective means of developing marker resources for mitochondrial genomes in other plant species where reference sequences are unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号