首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  完全免费   11篇
  2001年   3篇
  1999年   3篇
  1996年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有36条查询结果,搜索用时 78 毫秒
1.
Neutralization of endotoxin toxicity in chick embryos by antibiotics   总被引:27,自引:3,他引:24  
Rifkind, David (University of Colorado Medical Center, Denver), and John D. Palmer. Neutralization of endotoxin toxicity in chick embryos by antibiotics. J. Bacteriol. 92:815-819. 1966.-Three cationic cyclic polypeptide antibiotics, polymyxin B sulfate colistin sulfate, and tyrocidine hydrochloride, were shown to neutralize endotoxin lethality in chick embryos. The neutralizing potency of these antibiotics was approximately equivalent, 0.06 to 0.11 mumole of antibiotic per mug of endotoxin. Methane sulfonation of colistin resulted in a 13-fold decrease in endotoxin-neutralizing potency. Other cationic cyclic polypeptide antibiotics were inactive, as well all other classes of antibiotics tested, including the neutral cyclic polypeptides. Several nonantibiotic polycationic proteins and polymers tested were also inactive. It is suggested that certain cationic cyclic polypeptide antibiotics neutralize by combining directly with the toxic moiety of the endotoxin molecule. Possibly this combination involves the cationic groups of the antibiotics and the polyphosphate groups of the phospholipid component of endotoxin.  相似文献
2.
J D Palmer  W F Thompson 《Cell》1982,29(2):537-550
We examined the arrangement of sequences common to seven angiosperm chloroplast genomes. The chloroplast DNAs of spinach, petunia and cucumber are essentially colinear. They share with the corn chloroplast genome a large inversion of approximately 50 kb relative to the genomes of three legumes--mung bean, pea and broad bean. There is one additional rearrangement, a second, smaller inversion within the 50 kb inversion, which is specific to the corn genome. These two changes are the only detectable rearrangements that have occurred during the evolution of the species examined (corn, spinach, petunia, cucumber and mung bean) whose chloroplast genomes contain a large inverted repeat sequence of 22-25 kb. In contrast, we find extensive sequence rearrangements in comparing the pea and broad bean genomes, both of which have deleted one entire segment of the inverted repeat, and also in comparing each of these to the mung bean genome. Thus there is a relatively stable arrangement of sequences in those genomes with the inverted repeat and a much more dynamic arrangement in those that have lost it. We discuss several explanations for this correlation, including the possibility that the inverted repeat may play a direct role in maintaining a conserved arrangement of chloroplast DNA sequences.  相似文献
3.
Contrasting modes and tempos of genome evolution in land plant organelles   总被引:23,自引:0,他引:23  
Despite inhabiting the same cell lineage for roughly a billion years and being dependent on the same nucleus for most of their gene products and genetic control, the two organelle genomes of land plants exhibit remarkably different tempos and patterns of evolutionary change. With a few notable exceptions, chloroplast genomes are highly conserved in size and gene arrangement, whereas mitochondrial genomes vary enormously in size and organization. Conversely, nucleotide substitution rates are on average several times higher in chloroplast DNA than in mitochondrial DNA. Mechanistic and selective forces underlying these differences are only poorly understood.  相似文献
4.
5.
The non-photosynthetic, parasitic flowering plant Epifagus virginiana has recently been shown to contain a grossly reduced plastid genome that has lost many photosynthetic and chloro-respiratory genes. We have cloned and sequenced a 3.9 kb domain of plastid DNA from Epifagus to investigate the patterns of evolutionary change in such a reduced genome and to determine which genes are still present and likely to be functional. This 3.9 kb domain is colinear with a 35.4 kb region of tobacco chloroplast DNA, differing from it by a minimum of 11 large deletions varying in length from 354 bp to 11.5 kb, as well as by a number of small deletions and insertions. The nine genes retained in Epifagus encode seven tRNAs and two ribosomal proteins and are coextensive and highly conserved in sequence with homologs in photosynthetic plants. This suggests that these genes are functional in Epifagus and, together with evidence that the Epifagus plastid genome is transcribed, implies that plastid gene products play a role in processes other than photosynthesis and gene expression. Genes that are completely absent include not only photosynthetic genes, but surprisingly, genes encoding three subunits of RNA polymerase, four tRNAs and one ribosomal protein. In addition, only pseudogenes are found for two other tRNAs. Despite these defunct tRNA genes, codon and amino acid usage in Epifagus protein genes is normal. We therefore hypothesize that the expression of plastid genes in Epifagus relies on the import of nuclear encoded tRNAs and RNA polymerase from the cytoplasm.  相似文献
6.
Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.  相似文献
7.
A rapid and simple method for constructing restriction maps of large DNAs (100-200 kb) is presented. The utility of this method is illustrated by mapping the Sal I, Sac I, and Hpa I sites of the 152 kb Atriplex triangularis chloroplast genome, and the Sal I and Pvu II sites of the 155 kb Cucumis sativa chloroplast genome. These two chloroplast DNAs are very similar in organization; both feature the near-universal chloroplast DNA inverted repeat sequence of 22-25 kb. The positions of four different genes have been localized on these chloroplast DNAs. In both genomes the 16S and 23S ribosomal RNAs are encoded by duplicate genes situated at one end of the inverted repeat, while genes for the large subunit of ribulose-1,5-bisphosphate carboxylase and a 32 kilodalton photosystem II polypeptide are separated by 55 kb of DNA within the large single copy region. The physical and genetic organization of these DNAs is compared to that of spinach chloroplast DNA.  相似文献
8.
9.
10.
The plastid genome from subclover, Trifolium subterraneum, is unusual in a variety of respects, compared with other land-plant chloroplast DNAs. Gene mapping of subclover chloroplast DNA reveals major structural reorganization of the genome. Ten clusters of genes are rearranged in both order and orientation. Eight large inversions are sufficient to explain this reorganization; however, the actual evolutionary changes may have been more complex. For example, a fine-scale analysis of a set of ribosomal protein genes reveals the occurrence of insertions, deletions, and transpositions. Associated with this unusually unstable genome are two structural features potentially involved in the rearrangements. A dispersed family of repeats, with each element about 1 kb in length, is present in at least six copies. A survey of a wide taxonomic range of species indicates that these elements are unique to the chloroplast DNAs of subclover and two closely related species. Several of the repeated elements are associated with genomic rearrangements, and one repeat is inserted within a normally highly conserved series of genes. This set of dispersed repeats may be the first family of transposable elements found in any organelle genome. In addition, the subclover genome is much larger than those in other closely related legumes, even when one takes into account the presence of the repeated elements. Some of the extra DNA has no sequence similarity to other chloroplast genomes and may represent insertion of DNA from another genome. These unusual features are not found in the structurally stable chloroplast genomes of other vascular plants and may, therefore, be implicated in the rapid and major reorganization of the chloroplast DNA in subclover.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号