首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomatal behaviour, transpiration and nitrogen fixation were investigated in Medicago sativa L. (cvs. Tierra de Campos and Aragon, Hidalgo-Maynar 1966), Trifolium repens L. (cv. Aberystwyth S-184) and Trifolium subterraneum L. (cv. Clare) subjected to drought by withholding water and then to three days’ recovery after rewatering. Dawn leaf water potential was measured with pressure chamber, stomatal response with a diffusion porometer and nitrogen fixation by using acetylene reduction technique. At low water potentials, the leaf resistance was higher in Medicago than in Trifolium. As water stress developed all species decreased their transpiration, T. subterraneum being the one most affected by moderate deficits. During water stress ‘Tierra de Campos’ always maintained higher acetylene reduction levels than ‘Aragon’ and the Trifolium species, except for the lowest water potentials. During recovery from water stress only ‘Tierra de Campos’ reached predeficit transpiration rates. In ‘Tierra de Campos’ acetylene reduction recovery after rewatering was more rapid and intense than in ‘Aragon’. It is concluded that, of the plants investigated, ‘Tierra de Campos’ was best adapted to water deficits.  相似文献   

2.
The effect of NaCl salinity at concentrations of 43–173 mM in nutrient solution on net gas exchange of attached cowpea [Vigna unguiculata (L.) Walp cv. California Black-eye No. 5 (CB5)] leaves was investigated under both greenhouse and growth chamber conditions.
There was a marked decrease in leaf conductance to water vapor after exposure to low salinity levels and a slighter decrease when salinity levels were higher. The decrease in net assimilation was much more gradual throughout the entire salinity range. The altered responses of net assimilation and leaf conductance to salinity were more evident at a high light intensity. A decrease in intercellular partial CO2 pressure [p(CO2)] was found at the low and intermediate salinity levels but not at the high level. These findings suggest that CO, assimilation was mainly controlled by stomatal conductance and the fixation of CO, might have been increased due to stimulated biochemical activity or to higher chlorophyll concentration per unit leaf area. A decrease in assimilation was already found one day after salinization and pro-ceeded up to 4 days when it was inhibited by 50% at 43 mM NaCl and up to 85% at 173 mM. The decrease in transpiration was larger than the decrease in net assimila-tion, and both were attributed to osmotic stress. Partial recovery was found thereaf-ter and new steady-state rates, in the range of 55 to 100% of the control, were then obtained for salinity levels between 43 and 130 mM. Inhibition of net CO, assimila-tion at this stage was attributed partly to a specific sodium effect and partly to plant water status. A linear relationship between leaf sodium content and net photosynthe-sis was also evident at this stage. Net CO, assimilation recovered more completely than transpiration when salt stress was removed, but at 173 mM NaCl recovery was neglible.  相似文献   

3.
Faba bean (Vicia faba L. var. minor cv. Alborea) and pea (Pisum sativum L. cv. Lincoln) plants, inoculated with Rhizobium leguminosarum biovar. viciae strain GRA19, were treated with salt (100 mM NaCl) and/or nitrate (8 mM KNO3) to test whether plants grown with inorganic-nitrogen are more tolerant to salinity than plants entirely reliant upon fixed nitrogen. According to the growth inhibition recorded, pea plants dependent on dinitrogen fixation proved more tolerant to salt stress than those N-fertilized, in contrast to results obtained for faba bean plants. This study therefore confirms that plants dependent on nitrogen fixation are not always more sensitive to salinity than are N-fertilized plants. Nitrate addition did not reduce the specific nitrogenase activity in pea, but did in faba bean. However, nodulation was inhibited in both legumes. The specific nitrogenase activity was more affected by salt treatment in N-fertilized plants for both legumes. The activity of the enzymes mediating ammonium assimilation in nodules (GS, NADH-GOGAT) was inhibited by salt stress both in N-fixing and in N-fertilized pea and faba bean plants.  相似文献   

4.
A method based on simultaneous short-term exposure to 14CO2 and 15N2 is described for studying nitrogen fixation and distribution in legumes relative to carbon assimilation and use. Equipment designed to accomodate experiments under natural conditions with very little disturbance of the N2 fixing association is used. It permits continuous measurement and regulation of variables such as air temperature, humidity and CO2 concentration as well as soil aeration. Measurements of distribution and use of assimilates, respiration of nodulated roots, quantitative N2 fixation and the distribution and fate of fixed N as a function of time lead to a precise estimation of C and N budgets for each labelling period. When experiments are done at several phenological stages they give a new insight into the complex C and N interrelations in legume symbiosis.
A series of trials throughout the growth period of Glycine max (L.) Merr. cv. Hodgson demonstrated the sensitivity of the method. The development of the plants from vegetative to reproductive stages was accompanied by a complete change in the distribution patterns of current assimilates and products of nitrogen fixation. Maximum sink strength moved from the leaves to the pods and seeds which ended up receiving 70% of the incoming C and 35% of the fixed N. The fact that up to 85% of fixed N in the plants was in the reproductive organs at maturity can be accounted for by remobilisation from vegetative parts.
The respiration of nodulated roots utilized 33% of carbon translocated to below-ground plant parts before nitrogen fixation started, but as much as 50% during the period of optimal fixation. The advantages and limitations of the isotopic method described are critically discussed as a prelude to future investigations.  相似文献   

5.
Medicago ciliaris (L.) All., a salt-tolerant legume, was not nodulated by Rhizobium meliloti (2011), a strain commonly used for field inoculation of alfalfas. A strain of Rhizobium meliloti (ABS7) was isolated from saline Algerian soils. It is generally more salt-resistant than strain 2011, exhibits a higher rate of growth and induces the formation of nodules on M. ciliaris . C2H2 reduction activity of M. ciliaris nodules was inhibited by 50% in the presence of 200 m M NaCl in the culture medium. whereas 100 m M NaCl was sufficient to inhibit the activity of nodules of M. sativa (L. cv. Europe). C2H2 reduction by bacteroids, isolated from nodules of the two species of alfalfa, was directly inhibited by the presence of NaCl in the incubation medium. In both cases, glucose could support bacteroid nitrogen fixation, but only in a narrow range of O2 tensions. Bacteriods from M. ciliaris were more tolerant to salt than M. sativa ones. The salt resistance of bacteroids from nodules of plants watered with NaCl solutions was not improved in either species. Salt directly added to the incubation mixture of bacteroids or to the culture medium of plants inhibited O2 uptake of bacteroids isolated from nodules of both M. ciliaris and M. sativa . The depressive effect of NaCl on bacteroid C2H2 reduction could be directly related to the drop in bacteroid respiration. The nitrogen fixation capacity of the M. ciliaris-Rhizobium meliloti (ABS7) symbiosis under saline conditions leads us to recommend the introduction of this association in salt-troubled areas.  相似文献   

6.
The present study was carried out to determine interactive and comparative effects of salinity and water stress on growth, proline accumulation, chlorophyll, carotenoid and macro nutrient content and antioxidative enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) in hydroponically grown maize (Zea mays L.cv DKC647) plants. Plants were treated two salt (NaCl) concentrations and polyethylene glycol 6000 (PEG 6000) to create water stress. The results obtained from this experiment show that high salinity reduced growth through decreasing shoot and root dry and fresh weight, chlorophyll, and carotenoid content, but PEG treatment had no significant effect on this parameters. Under NaCl and PEG 6000 treatment, uptake and translocation of mineral nutrients changed drastically. The high presence of Na+ in nutrient solution affected considerably the plant nutritional requirement, especially influencing the uptake of Ca2+ and K+, which were restricted for competition. Proline accumulation, and SOD, POX and PPO activities were increased with the increasing intensity of NaCl stress, but PEG 6000 treatment in addition to NaCl had more significant effect on this enzyme activities. These results suggest that maize plants may be increased proline content to maintain osmotic adjustment and increased the activity of antioxidant enzymes to have a better protection against active oxygen species (AOS) under salt and water stress.  相似文献   

7.
The long-term interaction between elevated CO2 and soil water deficit was analysed in N2-fixing alfalfa plants in order to assess the possible drought tolerance effect of CO2. Elevated CO2 could delay the onset of drought stress by decreasing transpiration rates, but this effect was avoided by subjecting plants to the same soil water content. Nodulated alfalfa plants subjected to ambient (400 μmol mol?1) or elevated (700 μmol mol?1) CO2 were either well watered or partially watered by restricting water to obtain 30% of the water content at field capacity (ampproximately 0.55 g water cm?3). The negative effects of soil water deficit on plant growth were counterbalanced by elevated CO2. In droughted plants, elevated CO2 stimulated carbon fixation and, as a result, biomass production was even greater than in well-watered plants grown in ambient CO2. Below-ground production was preferentially stimulated by elevated CO2 in droughted plants, increasing nodule biomass production and the availability of photosynthates to the nodules. As a result, total nitrogen content in droughted plants was higher than in well-watered plants grown in ambient CO2. The beneficial effect of elevated CO2 was not correlated with a better plant water status. It is concluded that elevated CO2 enhances growth of droughted plants by stimulating carbon fixation, preferentially increasing the availability of photosynthates to below-ground production (roots and nodules) without improving water status. This means that elevated CO2 enhances the ability to produce more biomass in N2-fixing alfalfa under given soil water stress, improving drought tolerance.  相似文献   

8.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

9.
Olive ( Olea europaea L. cv. Frantoio) plants grown hydroponically in a glasshouse were supplied with half-strength Hoagland solutions containing 0, 50, 100, and 200 m M NaCl for 4 weeks and subsequently supplied with the standard solution without NaCl to relieve salinity stress. Two complete stress-relief cycles were repeated on the same plant material during one growing season. Growth was inhibited at all salt levels, but most growth parameters of plants treated with 50 or 100 m M NaCl returned to control levels after 4 weeks of relief. More severely stressed plants (200 m M NaCl) recovered to only 60% of the growth of the controls after 4 weeks. During relief, plants treated with 50 and 100 m M NaCl had net photosynthetic rates and stomatal conductances higher than the controls. Increasing the NaCl concentration of the external solution from 0 to 200 m M decreased both leaf pre-dawn water potential (from -0.3 to -1.0 MPa) and osmotic potential (from -2.1 to -2.7 MPa). The sodium concentration in the leaves of plants treated with 200 m M NaCl reached maximum levels of 211 and 388 m M (expressed on a tissue water basis) at the end of the first salinity and relief periods, respectively. Leaf chloride concentrations were 359 and 223 m M at the same sampling dates. These data indicate that the inhibitory effects of salinization on growth and gas exchange of the salt-tolerant olive cv. Frantoio can be readily reversed when salinity is relieved, despite the marked accumulation of potentially toxic ions (Na+. Cl) in the leaf.  相似文献   

10.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   

11.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

12.
Citrus rootstocks as well as lemon scions differ in their ability to restrict sodium and chloride ions and in their sensitivity to saline stress. To determine the behaviour of different rootstock-scion combinations, 3 lemon cultivars on 3 different rootstocks were grown in containers in a greenhouse and irrigated with 5, 25 and 50 m M NaCl. Growth of the plants and foliar contents of sodium and chloride as well as physiological parameters including transpiration rate, gas exchange, stomatal conductance and chlorophyll content were evaluated. Shoot length of the plants on sour orange and on C. volkameriana showed a greater reduction with salinity than those on C. macrophylla . Accumulation of salt in the leaves was also scion dependent, cv. 'Eureka' having higher concentrations of sodium and chloride than the others. Assimilation rate of CO2 and stomatal conductance were greatly reduced by salinity in the leaves of Verna and Eureka on sour orange. Gas exchange in the leaves was highly correlated with chloride and sodium contents in all lemon-rootstock combinations. C. macrophylla showed a higher resistance to salinity than C. volkameriana and sour orange. Inferences on the mechanisms of action of salt on lemon trees are discussed.  相似文献   

13.
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+(86Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small.  相似文献   

14.
The comparative responses of ten spring wheat cultivars to water stress were investigated. Wheat plants were cultured under hydroponics conditions (Hoagland nutrient) to the stage of three-leaf seedlings. Then, the water medium was supplemented with PEG (drought) or NaCl (salinity) to obtain a water status equal to −1.5 MPa. After a 2-day treatment, the changes in the following parameters were determined: fresh and dry weight, macro- and microelement accumulation, membrane injury (electrolyte leakage, lipid peroxidation) and fatty acid content of the phospholipid fraction of plasmalemma (in comparison to plants not stressed, taken as a control). Generally, the plants were more significantly influenced by water stress stimulated by PEG than by NaCl treatment, as compared to the plants cultivated in the control media. The results of the decrease in water content in leaves and electrolyte leakage from cells corresponded well with the intensity of lipid peroxidation (determined by malondialdehyde—MDA-content) and were chosen for the selection of investigated genotypes for tolerance to both stresses. The more tolerant genotypes exhibited the opposite changes in phospholipid fatty acid unsaturation for two applied stresses i.e. NaCl treatment caused a decrease in unsaturation whereas in PEG-treated plants an increase in unsaturation was observed. These changes were reversed for less tolerant plants, i.e. NaCl treatment influenced an increase in fatty acid unsaturation whereas in PEG-treated plants a decrease in unsaturation was measured. The ratio of U/S (unsaturated to saturated fatty acids) correlated with the total amount of accumulated macroelements. The content of Mg, Ca and S in leaves of plants undergoing both stress factors (NaCl and PEG) dropped whereas the K and P content increased in leaves of wheat seedlings cultured on media containing NaCl only. For microelements, a decrease in the accumulation of these nutrients was detected in all investigated seedlings. However, a greater reduction in the level of these elements occurred in seedlings grown on media with PEG in comparison to those grown on NaCl containing media.  相似文献   

15.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

16.
Field, greenhouse and laboratory investigations were conducted to determine the effect of four dinitroaniline herbicides on rhizobia, nodulation and nitrogen fixation of four groundnut cultivars. Benefin, dinitramine and nitralin used at recommended levels decreased nodule dry weight, nitrogenase activity and total nitrogen of groundnut tops and pod yield in three cultivars Kadiri 71-1, Kadiri-2, ICGS-11 and not for a fourth cultivar, Kadiri-3 of groundnut (Arachis hypogaea L.), but fluchloralin used at the recommended level increased the nodulation rate, nitrogenase activity and total nitrogen of groundnut tops and pod yield compared to untreated plants. Studies were conducted in vitro to determine the relative toxicity of the herbicides on four Rhizobium strains isolated from the nodules of four cultivars of groundnut. It was found that various strains of rhizobia differ in their sensitivity to different rates of the herbicides tested. Carbon dioxide exchange rate (CER) of all the cultivars which received herbicide treatment was measured at different time intervals to determine the relationship between photosynthesis and inhibition of nodulation. The lack of adverse effect on the CER of four cultivars when treated at recommended concentrations indicated that nitrogen fixation was affected in cultivars Kadiri 71-1, Kadiri-2 and ICGS-11 due to inhibition of nodulation.  相似文献   

17.
We evaluated response differences of normal and transformed (so-called ‘hairy’) roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in ‘hairy’ roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.  相似文献   

18.
Abstract Shifts in ?13C of the graminaceous C3 halophyte Puccinellia nuttalliana (Schultes) Hitch. can be induced by salinization. To investigate this phenomenon, three approaches were taken: assay of carboxylases, CO2-enrichment studies, and gas exchange analysis. Although ribulose-1,5-bisphosphate carboxylase activity decreased with salinity, phosphoenolpyruvate carboxylase activity did not increase and its levels were not atypical of C3 plants. When plants were grown at four NaCl concentrations under atmospheres of 310 and 1300 cm3 m?3 CO2, the CO2-enrichment enhanced the effects of salinity on ?13C. This is consistent with a biophysical explanation for salt-induced shifts in ?13C, whereby there is a steepening of the CO2 diffusion gradient into the leaf. Gas exchange analysis indicated that intercellular CO2 concentrations were depressed in the leaves of salt-affected plants. This resulted from a greatly decreased stomatal conductance coupled with only small effects on intrinsic photosynthetic capacity. Water-use efficiency was enhanced.  相似文献   

19.
Physiological mechanisms of two rape (Brassica napus L.) genotype adaptation to chlorine salinity were investigated. The plants of two cultivars (Olga and Westar) differing in salt tolerance were grown in the pots filled with Perlite on the Hoagland and Snyder’s medium under controlled conditions. At a stage of 3–4 true leaves, the plants experienced 7-day-long salinity induced by a single addition of NaCl to the nutrient medium in order to attain desired final salt concentration (from 50 to 400 mM). The obtained results showed that a greater salt tolerance of cv. Olga plants (as compared with cv. Westar) could be accounted for by a capability of their root cells to uptake water under high salinity (300–400 mM NaCl), which is evident from a greater content of water in the tissues of cv. Olga. This was ensured by a sharp fall of the osmotic potential of the cellular contents (down to −2.3 MPa) at a low water potential of nutrient solution owing to more active uptake of Na+ (57–61 μeq/g fr wt) and K+ (210–270 μeq/g fr wt) as well as active accumulation of proline (30–50 μmol/g fr wt). The latter is caused by a reduced activity of proline dehydrogenase and retarded degradation of this osmolyte. It is important that, in contrast to less tolerant genotype, the rape plants of salt-resistant cultivar were able to maintain the K+/Na+ ratio at a rather high level at salinity of different degree, which made it possible to preserve ionic homeostasis under adverse conditions. Original Russian Text ? A.M. Mokhamed, G.N. Raldugina, V.P. Kholodova, Vl.V. Kuznetsov, 2006, published in Fiziologiya Rastenii, 2006, Vol. 53, No. 5, pp. 732–738.  相似文献   

20.
The changes caused by NaCl− and CaCl2-induced salinity on several leaf parameters have been measured in two cultivars of barley ( Hordeum vulgare L.) growing in a growth chamber in nutrient solution. Salinity was induced by adding to the nutrient solution equal weights of NaCl and CaCl2, to obtain conductivities of 2, 6, 12, 19 and 26 dS m−1. Salinity induced decreases in the leaf water potential and in the osmotic potential. Salinity did not induce significant changes in the relative photosynthetic pigment composition of barley leaves, the photosynthetic pigment stoichiometry for neoxanthin:violaxanthin cycle pigments:lutein:β-carotene:Chl b :Chl a being close to 3:6:14:12:25:100 (mol:mol). Salinity per se did not induce interconversions in the carotenoids within the violaxanthin cycle in most barley leaves. The PSII photochemistry of most barley leaves was unchanged by salinity. However, some apparently healthy leaves growing in high salinity exhibited sudden decreases in PSII photochemistry and increases in zeaxanthin (at the expense of violaxanthin), that preceded rapid leaf drying. Salinity induced significant changes in the slow part of the chlorophyll fluorescence induction curve from barley leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号