首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvesting corn stover for biofuel production may decrease soil organic carbon (SOC) and increase greenhouse gas (GHG) emissions. Adding additional organic matter into soil or reducing tillage intensity, however, could potentially offset this SOC loss. Here, using SOC and life cycle analysis (LCA) models, we evaluated the impacts of land management change (LMC), that is, stover removal, organic matter addition, and tillage on spatially explicit SOC level and biofuels’ overall life cycle GHG emissions in US corn–soybean production systems. Results indicate that under conventional tillage (CT), 30% stover removal (dry weight) may reduce baseline SOC by 0.04 t C ha?1 yr?1 over a 30‐year simulation period. Growing a cover crop during the fallow season or applying manure, on the other hand, could add to SOC and further reduce biofuels’ life cycle GHG emissions. With 30% stover removal in a CT system, cover crop and manure application can increase SOC at the national level by about 0.06 and 0.02 t C ha?1 yr?1, respectively, compared to baseline cases without such measures. With contributions from this SOC increase, the life cycle GHG emissions for stover ethanol are more than 80% lower than those of gasoline, exceeding the US Renewable Fuel Standard mandate of 60% emissions reduction in cellulosic biofuels. Reducing tillage intensity while removing stover could also limit SOC loss or lead to SOC gain, which would lower stover ethanol life cycle GHG emissions to near or under the mandated 60% reduction. Without these organic matter inputs or reduced tillage intensity, however, the emissions will not meet this mandate. More efforts are still required to further identify key practical LMCs, improve SOC modeling, and accounting for LMCs in biofuel LCAs that incorporate stover removal.  相似文献   

2.
Excessive corn (Zea mays L.) stover removal for biofuel and other uses may adversely impact soil and crop production. We assessed the effects of stover removal at 0, 25, 50, 75, and 100% from continuous corn on water erosion, corn yield, and related soil properties during a 3‐year study under irrigated and no‐tillage management practice on a Ulysses silt loam at Colby, irrigated and strip till management practice on a Hugoton loam at Hugoton, and rainfed and no‐tillage management practice on a Woodson silt loam at Ottawa in Kansas, USA. The slope of each soil was <1%. One year after removal, complete (100%) stover removal resulted in increased losses of sediment by 0.36–0.47 Mg ha?1 at the irrigated sites, but, at the rainfed site, removal at rates as low as 50% resulted in increased sediment loss by 0.30 Mg ha?1 and sediment‐associated carbon (C) by 0.29 kg ha?1. Complete stover removal reduced wet aggregate stability of the soil at the irrigated sites in the first year after removal, but, at the rainfed site, wet aggregate stability was reduced in all years. Stover removal at rates ≥ 50% resulted in reduced soil water content, increased soil temperature in summer by 3.5–6.8 °C, and reduced temperature in winter by about 0.5 °C. Soil C pool tended to decrease and crop yields tended to increase with an increase in stover removal, but 3 years after removal, differences were not significant. Overall, stover removal at rates ≥50% may enhance grain yield but may increase risks of water erosion and negatively affect soil water and temperature regimes in this region.  相似文献   

3.
Persson  T.  Wirén  A. 《Plant and Soil》1995,173(1):55-65
Yield decline of cereals grown in monoculture may be alleviated with alternative crop management strategies. Crop rotation and optimized tillage and fertilizer management can contribute to more sustainable food and fiber production in the long-term by increasing diversity, maintaining soil organic matter (SOM), and reducing adverse effects of excessive N application on water quality. We investigated the effects of crop sequence, tillage, and N fertilization on long-term grain production on an alluvial, silty clay loam soil in southcentral Texas. Crop sequences consisted of monoculture sorghum (Sorghum bicolor (L.) Moench,) wheat (Triticum aestivum L.), and soybean (Glycine max (L.) Merr), wheat/soybean double-crop, and rotation of sorghum with wheat/soybean. Grain yields tended to be lower with no tillage (NT) than with conventional tillage (CT) early in the study and became more similar after 11 years. Nitrogen fertilizer required to produce 95% to maximum sorghum yield was similar for monoculture and rotation upon initiation of the experiment and averaged 16 and 11 mg N g-1 grain with NT and CT, respectively. After 11 years, however, the N fertilizer requirement became similar for both tillage regimes, but was greater in monoculture (17 mg N g-1 grain) than in rotation (12 mg N g-1 grain). Crop sequences with double-cropping resulted in greater land use efficiency because similar or lower amounts of N fertilizer were required to produce equivalent grain than with less intensive monoculture systems. These more intensive crop sequences produced more stover with higher N quality primarily due to the inclusion of soybean in the rotation. Large quantities of stover that remained on the soil surface with NT led to greater SOM content, which increased the internal cycling of nutrients in this soil. In southcentral Texas, where rainfall averages nearly 1000 mm yr-1, more intensive cropping of sorghum, wheat, and soybean with moderate N fertilization using reduced tillage can increase grain production and potentially decrease N losses to the environment by cycling more N into the crop-SOM system.  相似文献   

4.
Residue removal for biofuel production may have unintended consequences for N2O emissions from soils, and it is not clear how N2O emissions are influenced by crop residue removal from different tillage systems. Thus, we measured field‐scale N2O flux over 5 years (2005–2007, 2010–2011) from an annual crop rotation to evaluate how N2O emissions are influenced by no‐till (NT) compared to conventional tillage (CV), and how crop residue removal (R?) rather than crop residue return to soil (R+) affects emissions from these two tillage systems. Data from all 5 years indicated no differences in N2O flux between tillage practices at the onset of the growing season, but CT had 1.4–6.3 times higher N2O flux than NT overwinter. Nitrous oxide emissions were higher due to R? compared to R+, but the effect was more marked under CT than NT and overwinter than during spring. Our results thus challenge the assumption based on IPCC methodology that crop residue removal will result in reduced N2O emissions. The potential for higher N2O emission with residue removal implies that the benefit of utilizing biomass as biofuels to mitigate greenhouse gas emission may be overestimated. Interestingly, prior to an overwinter thaw event, dissolved organic C (DOC) was negatively correlated to peak N2O flux (r = ?0.93). This suggests that lower N2O emissions with R+ vs. R? may reflect more complete stepwise denitrification to N2 during winter and possibly relate to the heterotrophic microbial capacity for processing crop residue into more soluble C compounds and a shift in the preferential C source utilized by the microbial community overwinter.  相似文献   

5.
In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This regional survey summarizes soil GHG emissions from nine maize production systems evaluating different levels of corn stover removal under conventional or conservation tillage management across the US Corn Belt. Cumulative growing season soil emissions of CO2, N2O, and/or CH4 were measured for 2–5 years (2008–2012) at these various sites using a standardized static vented chamber technique as part of the USDA-ARS’s Resilient Economic Agricultural Practices (REAP) regional partnership. Cumulative soil GHG emissions during the growing season varied widely across sites, by management, and by year. Overall, corn stover removal decreased soil total CO2 and N2O emissions by -4 and -7 %, respectively, relative to no removal. No management treatments affected soil CH4 fluxes. When aggregated to total GHG emissions (Mg CO2?eq ha?1) across all sites and years, corn stover removal decreased growing season soil emissions by ?5?±?1 % (mean?±?se) and ranged from -36 % to 54 % (n?=?50). Lower GHG emissions in stover removal treatments were attributed to decreased C and N inputs into soils, as well as possible microclimatic differences associated with changes in soil cover. High levels of spatial and temporal variabilities in direct GHG emissions highlighted the importance of site-specific management and environmental conditions on the dynamics of GHG emissions from agricultural soils.  相似文献   

6.
Life cycle assessment of corn grain and corn stover in the United States   总被引:1,自引:0,他引:1  
Background, aim, and scope  The goal of this study is to estimate the county-level environmental performance for continuous corn cultivation of corn grain and corn stover grown under the current tillage practices for various corn-growing locations in the US Corn Belt. The environmental performance of corn grain varies with its farming location because of climate, soil properties, cropping management, etc. Corn stover, all of the above ground parts of the corn plant except the grain, would be used as a feedstock for cellulosic ethanol. Materials and methods  Two cropping systems are under investigation: corn produced for grain only without collecting corn stover (referred to as CRN) and corn produced for grain and stover harvest (referred to as CSR). The functional unit in this study is defined as dry biomass, and the reference flow is 1 kg of dry biomass. The system boundary includes processes from cradle to farm gate. The default allocation procedure between corn grain and stover in the CSR system is the system expansion approach. County-level soil organic carbon dynamics, nitrate losses due to leaching, and nitrogen oxide and nitrous oxide emissions are simulated by the DAYCENT model. Life cycle environmental impact categories considered in this study are total fossil energy use, climate change (referred to as greenhouse gas emissions), acidification, and eutrophication. Sensitivities on farming practices and allocation are included. Results  Simulations from the DAYCENT model predict that removing corn stover from soil could decrease nitrogen-related emissions from soil (i.e., N2O, NO x , and NO3 leaching). DAYCENT also predicts a reduction in the annual accumulation rates of soil organic carbon (SOC) with corn stover removal. Corn stover has a better environmental performance than corn grain according to all life cycle environmental impacts considered. This is due to lower consumption of agrochemicals and fuel used in the field operations and lower nitrogen-related emissions from the soil. Discussion  The primary source of total fossil energy associated with biomass production is nitrogen fertilizer, accounting for over 30% of the total fossil energy. Nitrogen-related emissions from soil (i.e., N2O, NO x , and NO3 leaching) are the primary contributors to all other life cycle environmental impacts considered in this study. Conclusions  The environmental performance of corn grain and corn stover varies with the farming location due to crop management, soil properties, and climate conditions. Several general trends were identified from this study. Corn stover has a lower impact than corn grain in terms of total fossil energy, greenhouse gas emissions, acidification, and eutrophication. Harvesting corn stover reduces nitrogen-related emissions from the soil (i.e., N2O, NO x , NO3 ). The accumulation rate of soil organic carbon is reduced when corn stover is removed, and in some cases, the soil organic carbon level decreases. Harvesting only the cob portion of the stover would reduce the negative impact of stover removal on soil organic carbon sequestration rate while still bringing the benefit of lower nitrogen-related emissions from the soil. No-tillage practices offer higher accumulation rates of soil organic carbon, lower fuel consumption, and lower nitrogen emissions from the soil than the current or conventional tillage practices. Planting winter cover crops could be a way to reduce nitrogen losses from soil and to increase soil organic carbon levels. Recommendations and perspectives  County-level modeling is more accurate in estimating the local environmental burdens associated with biomass production than national- or regional-level modeling. When possible, site-specific experimental information on soil carbon and nitrogen dynamics should be obtained to reflect the system more accurately. The allocation approach between corn grain and stover significantly affects the environmental performance of each. The preferred allocation method is the system expansion approach where incremental fuel usage, additional nutrients in the subsequent growing season, and changes in soil carbon and nitrogen dynamics due to removing corn stover are assigned to only the collected corn stover.  相似文献   

7.
Removal of corn (Zea mays L.) stover as a biofuel feedstock is being considered. It is important to understand the implications of this practice when establishing removal guidelines to ensure the long-term sustainability of both the biofuel industry and soil health. Aboveground and belowground plant residues are the soil’s main sources of organic materials that bind soil particles together into aggregates and increase soil carbon (C) storage. Serving to stabilize soil particles, soil organic matter (SOM) assists in supplying plant available nutrients, increases water holding capacity, and helps reduce soil erosion. Data obtained from three Corn Stover Regional Partnership sites (Brookings, SD; Morris, MN; and Ithaca, NE) were utilized to evaluate the impact of removing corn stover on soil physical properties, including dry aggregate size distribution (DASD), erodible fraction (EF), and SOM components. Each site consisted of a combination of three residue removal rates (low—removal of grain only, intermediate—approximately 50 % residue removal, and high—maximum amount of residue removal). Results showed that the distribution of soil aggregates was less favorable for all three locations when residue was removed without the addition of other sources of organic matter such as cover crops. Additionally, we found that when residue was removed and the soil surface was less protected, there was an increase in the EF at all three research sites. There was a reduction in the EF for both the Brookings, SD, and Ithaca, NE sites when cover crops were incorporated or additional nitrogen (N) was added to the system. Amounts of SOM, fine particulate organic matter (fPOM), and total particulate organic matter (tPOM) consistently decreased as greater amounts of residue were removed from the soil surface. Across these three locations, the removal of crop residue from the soil surface had a negative impact on measured soil physical properties. The addition of a cover crop or additional N helped reduce this impact as measured through aggregate size distribution and EF and SOM components.  相似文献   

8.

Background and aims

Conservation agriculture, the combination of minimal soil movement (zero or reduced tillage), crop residue retention and crop rotation, might have the potential to increase soil organic C content and reduce emissions of CO2.

Methods

Three management factors were analyzed: (1) tillage (zero tillage (ZT) or conventional tillage (CT)), (2) crop rotation (wheat monoculture (W), maize monoculture (M) and maize-wheat rotation (R)), and (3) residue management (with (+r), or without (?r) crop residues). Samples were taken from the 0–5 and 5–10?cm soil layers and separated in micro-aggregates (< 0.25?mm), small macro-aggregates (0.25 to 1?mm) and large macro-aggregates (1 to 8?mm). The carbon content of each aggregate fraction was determined.

Results

Zero tillage combined with crop rotation and crop residues retention resulted in a higher proportion of macro-aggregates. In the 0–5?cm layer, plots with a crop rotation and monoculture of maize and wheat in ZT+r had the greatest proportion of large stable macro-aggregates (40%) and highest mean weighted diameter (MWD) (1.7?mm). The plots with CT had the largest proportion of micro-aggregates (27%). In the 5–10?cm layer, plots with residue retention in both CT and ZT (maize 1?mm and wheat 1.5?mm) or with monoculture of wheat in plots under ZT without residues (1.4?mm) had the greatest MWD. The 0–10?cm soil layer had a greater proportion of small macroaggregates compared to large macro-aggregates and micro-aggregates. In the 0–10?cm layer of soil with residues retention and maize or wheat, the greatest C content was found in the small and large macro-aggregates. The small macro-aggregates contributed most C to the organic C of the sample. For soil cultivated with maize, the CT treatments had significantly higher CO2 emissions than the ZT treatments. For soil cultivated with wheat, CTR-r had significantly higher CO2 emissions than all other treatments.

Conclusion

Reduction in soil disturbance combined with residue retention increased the C retained in the small and large macro-aggregates of the top soil due to greater aggregate stability and reduced the emissions of CO2 compared with conventional tillage without residues retention and maize monoculture (a cultivation system normally used in the central highlands of Mexico).  相似文献   

9.
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long‐term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2O) and methane (CH4) fluxes and SOC changes (ΔSOC) at a long‐term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha?1 yr?1, respectively) under no‐till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2O and CH4 fluxes were measured for five crop‐years (2011–2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area‐ and yield‐scaled soil N2O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH4 neutral and CT a CH4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long‐term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks.  相似文献   

10.
It is generally thought that grain legume residues make a substantial net N contribution to soil fertility in crop rotation systems. However, most studies focus on effects of residues on crops immediately sown after the legume crop while in fact in many tropical countries with a prolonged dry season there is a large gap before planting the next crop with potential for nutrient losses. Thus the objectives of this study were* to improve the efficiency of groundnut (Arachis hypogaea L.) stover-N (100 kg N ha –1) recycling by evaluating the effect of dry season stover management, i.e. surface application and immediate incorporation after the legume crop or storage of residues until next cropping in the rainy season. N dynamics (litterbags, mineral N, microbial biomass N, N 2O emissions) were monitored and 15N labelled residues were applied to assess the fate of residue N in the plant–soil (0–100 cm) system during two subsequent maize crops. Recycling groundnut stover improved yield of the subsequent maize (Zea mays L.) crop compared to treatment without stover. A higher N recycling efficiency was observed when residues were incorporated (i.e. 55% total 15N recovery after second maize crop) than when surface applied (43% recovery) at the beginning of the dry season. This was despite the faster nitrogen release of incorporated residues, which led to more mineral N movement to lower soil layers. It appears that a proportion of groundnut stover N released during the dry season was effectively captured by the natural weed population (54–70 kg N ha –1) and subsequently recycled particularly in the incorporation treatment. Despite the presence of weeds major leaching losses occurred during the onset of the rainy season while N 2O emissions were relatively small. There was a good correlation between soil microbial biomass N and first crop maize yield. Incorporation of groundnut residues led to small increases in economic yield, i.e., 3120 versus 3528 kg ha –1 over two cropping cycles in the surface versus incorporation treatments respectively, with corresponding residue 15N uptakes of 4 and 8%, while 15N recovery in water stable aggregates (9–15%) was not significantly different. In contrast, when stover was removed and applied before the first crop, yield benefits were highest with cumulative maize yields of 4350 kg ha –1 and residue utilization of 12%. However, N recycling efficiency was not higher than in the early incorporation treatment due to an asynchrony of N release and maize N demand during the first crop.  相似文献   

11.
Alternative soil management practices are needed in semi-arid West Africa to sustain soil fertility and cereal production while reducing the need for extended fallow periods and chemical fertilizers. An experiment was conducted at the Cinzana Station near Segou, Mali to assess the effects of tillage, crop residue incorporation and legume rotation on the growth and yield of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum L.) for a period of eight years on a loamy sand and a loam soil. The following treatments were compared under tied ridging and the traditional open ridging: continuous cereal with crop residue removed, continuous cereal with crop residue incorporated, cereal in rotation with cowpea (Vigna unguiculata (L.) Waip.), cereal in rotation with sesbania (Sesbania rostrata Bremek. & Oberm.), and cereal in rotation with dolichos (Dolichos lablab L.). Legumes in rotation were incorporated as green manures except cowpea which was removed after each harvest. Tied ridging improved cereal grain yield from 1022 kg ha−1 with open ridging to 1091 kg ha−1 on the loamy sand and from 1554 kg ha−1 to 1697 kg ha−1 on the loam, when averaged across management regimes and years of cropping. Incorporation of cereal residue at the beginning of the rainy season every other year had only small and inconsistent effects on cereal yield. Rotation with cowpea increased cereal grain and stover yields by 18 and 25%, respectively, on the loamy sand, and by 23% and 27%, respectively, on the loam compared to continuous cereal, when averaged across tillage regimes and years. Sesbania and dolichos performed similarly as green manures on both soils. Incorporation of these legumes as green manure at the end of the rainy season increased cereal grain and stover yields by 37% and 49%, respectively, on the loamy sand, and by 27% and 30%, respectively, on the loam, compared to cereal monoculture without organic amendment, when averaged across tillage regimes and years. A significant linear increase in cereal yield was observed during the eight years of the study on the loam soil when sesbania and dolichos green manures were incorporated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   

13.
Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal. DAYCENT estimations of stover yields were correlated and reasonably accurate (adjusted r 2?=?0.53, slope?=?1.18, p?<<?0.001, intercept?=?0.36, p?=?0.11). Measured and simulated average grain yields across sites did not differ as a function of residue removal, but the model tended to underestimate average measured grain yields. Modeled and measured soil organic carbon (SOC) change for all sites were correlated (adjusted r 2?=?0.54, p?<<?0.001), but DAYCENT overestimated SOC loss with conventional tillage. Simulated and measured SOC change did not vary by residue removal rate. DAYCENT simulated annual N2O flux more accurately at low rates (≤2-kg N2O-N ha?1 year?1) but underestimated when emission rates were >3-kg N2O-N ha?1 year?1. Overall, DAYCENT performed well at simulating stover yields and low N2O emission rates, reasonably well when simulating the effects of management practices on average grain yields and SOC change, and poorly when estimating high N2O emissions. These biases should be considered when DAYCENT is used as a decision support tool for recommending sustainable corn stover removal practices to advance bioenergy industry based on corn stover feedstock material.  相似文献   

14.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

15.
New management strategies should be identified to increase the potential of bioenergy crops to minimize climate change. This study quantified the impact of sugarcane (Saccharum spp.) harvest systems, straw and soil management on carbon dioxide (CO2) fluxes prior to crop replanting carried out on February 2010 in southern Brazil. The soil studied was classified as Haplustult (USDA Soil Taxonomy). Three sugarcane harvest systems were considered: burned (BH) and green harvest with straw maintained on (GH SM) or removed from (GH SR) the soil surface. Our hypothesis is that intensive tillage and the management of sugarcane crop straw could lead to higher CO2 emissions from soil. We measured CO2 emissions in no‐till (NT) conditions and after conventional tillage (CT), and with or without dolomite and agricultural gypsum applications. Soil CO2 emissions were measured with a Li Cor chamber (Model Li‐8100). Water content of soil and soil temperature readings were first taken 24 h after tillage, over the next 25 days after tillage with 18 measurement days. The removal of sugarcane straw from the soil surface resulted in the rapid reduction of water content of soil (6% in volume) followed by a 64% increase in soil CO2‐C emissions, supporting our hypothesis. Additional soil CO2‐C emissions caused by removal of crop straw were 253 kg CO2‐C ha?1, which is as high as CO2‐C losses induced by tillage. Dolomite and agricultural gypsum applications did not always increase CO2 emissions, especially when applied on soil surface with crop straw and tilled. The conversion from burned to green harvest systems can improve the soil C sequestration rate in sugarcane crops when combined with reduced tillage and straw maintenance on soil surface. The effect of straw removal and related CO2 emission for electricity generation should be considered in further studies from sugarcane areas.  相似文献   

16.
Second generation biofuels, like cellulosic ethanol, have potential as important energy sources that can lower fossil fuel carbon emissions without affecting global food commodity prices. Agricultural crop residues, especially maize, have been proposed for use as biofuel, but the net greenhouse warming effect of the gained fossil fuel carbon offset needs to account for any ecosystem carbon losses caused by the large‐scale maize residue removal. Using differential 13C isotopic ratios between residue and soil in an incubation experiment, we found that removal of residue increased soil organic matter decomposition by an average of 16%, or 540–800 kg carbon ha?1. Thus, removal of residue for biofuel production can have a hidden carbon cost, reducing potential greenhouse gas benefits. Accurate net carbon accounting of cellulosic biofuel needs to include not only fossil fuel savings from use of the residue, but also any declines in soil carbon caused directly and indirectly by residue removal.  相似文献   

17.
Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near‐term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site‐level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue‐derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover‐derived biofuels. Using the most representative methodology for assessing long‐term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near‐term US cellulosic biofuel demand, could be met under common no‐till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no‐till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic biofuel production.  相似文献   

18.
Crop residues are potential biofuel feedstocks, but residue removal may reduce soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass, mitigating the negative effects of residue removal by adding to stable soil C pools. In a no‐till continuous corn bioenergy system in the northern US Corn Belt, we used 13CO2 pulse labeling to trace plant C from a winter rye (Secale cereale) cover crop into different soil C pools for 2 years following rye cover crop termination. Corn stover left as residue (30% of total stover) contributed 66, corn roots 57, rye shoots 61, rye roots 50, and rye rhizodeposits 25 g C m?2 to soil. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools than were aboveground inputs, and much of the root‐derived C was in mineral‐associated soil fractions. After 2 years, both above‐ and belowground inputs had declined substantially, indicating that the majority of both root and shoot inputs are eventually mineralized. Our results underscore the importance of cover crop roots vs. shoots and the importance of cover crop rhizodeposition (33% of total belowground cover crop C inputs) as a source of soil C. However, the eventual loss of most cover crop C from these soils indicates that cover crops will likely need to be included every year in rotations to accumulate soil C.  相似文献   

19.
研究耕作方式对冬小麦灌浆期光合性能日变化的影响,对灌浆期干物质积累、转运以及产量形成具有重要的理论意义.本研究以中国农业大学吴桥实验站2008年设置的长期耕作定位试验为基础,分析了免耕秸秆不还田(NT)、免耕秸秆还田(NTS)、旋耕秸秆不还田(RT)、旋耕秸秆还田(RTS)、深松秸秆不还田(DT)、深松秸秆还田(DTS)、翻耕秸秆不还田(CT)和翻耕秸秆还田(CTS)耕作处理对冬小麦灌浆期旗叶光合特性日变化、光响应曲线和产量的影响.结果表明: 不同耕作方式对冬小麦灌浆期旗叶净光合速率日变化和气孔导度日变化的影响均呈双峰曲线变化趋势,秸秆还田下不同耕作方式的冬小麦旗叶净光合速率高于相应的秸秆不还田处理;各耕作方式对冬小麦旗叶胞间CO2浓度日变化的影响均呈“广口V型”双峰曲线变化趋势;除DTS、RTS和RT处理冬小麦旗叶的蒸腾速率日变化规律呈单峰曲线变化外,其他各处理冬小麦旗叶的蒸腾速率日变化均呈“双峰曲线”变化趋势.模拟的最大净光合速率以DTS处理最大,分别比NT、DT、RT、CT、NTS、RTS和CTS处理增加了20.0%、21.7%、19.7%、21.5%、0.8%、12.1%和4.2%;秸秆还田条件下各处理的光响应曲线拟合程度均优于秸秆不还田处理.DTS籽粒产量最高,RTS次之,CTS再次,CT处理最小,DTS处理的籽粒产量分别比NTS、RTS、CTS、NT、DT、RT和CT处理高10.8%、1.3%、2.1%、5.4%、11.9%、12.4%和12.6%.通过光合速率和气孔导度日变化趋势可得,不同耕作方式下秸秆还田技术,特别是DTS和NTS处理可减缓光合午休现象,使冬小麦维持较高的光合速率,有利于干物质积累和产量的提高.  相似文献   

20.
土壤深松和补灌对小麦干物质生产及水分利用率的影响   总被引:7,自引:0,他引:7  
研究一次深松耕作后土壤水分对冬小麦籽粒产量和水分利用率的影响,为小麦节水高产栽培提供理论依据.于2008-2009和2009-2010两个小麦生长季,选用高产小麦品种济麦22,采取测墒补灌的方法,研究了深松+旋耕和旋耕2种耕作方式下土壤水分对小麦0-200 cm土层土壤含水量、干物质积累与分配、籽粒产量及水分利用率的影响.结果表明,(1)深松+旋耕40-180 cm土层土壤含水量低于旋耕处理;旗叶光合速率和水分利用率,开花后干物质积累量及其对籽粒的贡献率显著高于旋耕处理.(2)W3(补灌至0-140 cm土层土壤相对含水量播种期为85%,越冬期80%,拔节和开花期75%)成熟期0-200cm土层土壤含水量与W1(播种期80%,越冬期80%,拔节和开花期75%)和W2处理(播种期80%,越冬期85%,拔节和开花期75%)无显著差异;W3和W'3(播种期85%,越冬期85%,拔节和开花期75%)60-140 cm土层土壤含水量分别低于W4(播种期85%,越冬期85%,拔节和开花期75%)和W'4(播种期90%,越冬期85%,拔节和开花期75%)处理;W3和W'3灌浆中后期旗叶光合速率较高,开花后干物质积累量及其对籽粒的贡献率显著高于其他处理,获得高的籽粒产量和水分利用率.综合考虑籽粒产量、水分利用率和灌溉效益,在深松+旋耕条件下,两年度分别以W3和W'3为节水高产的最佳处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号