首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decapping Scavenger (DcpS) enzyme rids eukaryotic cells of short mRNA fragments containing the 5′ mRNA cap structure, which appear in the 3′ → 5′ mRNA decay pathway, following deadenylation and exosome-mediated turnover. The unique structural properties of the cap, which consists of 7-methylguanosine attached to the first transcribed nucleoside by a triphosphate chain (m7GpppN), guarantee its resistance to non-specific exonucleases. DcpS enzymes are dimers belonging to the Histidine Triad (HIT) superfamily of pyrophosphatases. The specific hydrolysis of m7GpppN by DcpS yields m7GMP and NDP. By precluding inhibition of other cap-binding proteins by short m7GpppN-containing mRNA fragments, DcpS plays an important role in the cap-dependent mRNA metabolism. Over the past decade, lots of new structural, biochemical and biophysical data on DcpS has accumulated. We attempt to integrate these results, referring to DcpS enzymes from different species. Such a synergistic characteristic of the DcpS structure and activity might be useful for better understanding of the DcpS catalytic mechanism, its regulatory role in gene expression, as well as for designing DcpS inhibitors of potential therapeutic application, e.g. in spinal muscular atrophy.  相似文献   

2.
A series of new dinucleotide cap analogs with methylene groups replacing oxygens within the pyrophosphate moieties have been synthesized. All the compounds were resistant to the human scavenger decapping hydrolase, DcpS. Binding constants of the modified caps to eIF4E are comparable to those obtained for m7GpppG. This suggests these methylene modifications in the pyrophosphate chain do not significantly affect cap-binding at least for eIF4E. These cap analogs are also good inhibitors of in vitro translation. mRNAs capped with novel analogs were translated similarly to the mRNA capped with the parent m7GpppG.  相似文献   

3.
Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5′,5′-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m27,3′-OGpppG. Higher expression of cancer antigens would make mRNAs containing m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2 favorable for anticancer immunization.  相似文献   

4.
The human scavenger decapping enzyme, DcpS, functions to hydrolyze the resulting cap structure following cytoplasmic mRNA decay yet is, surprisingly, a nuclear protein by immunofluorescence. Here, we show that DcpS is a nucleocytoplasmic shuttling protein that contains separable nuclear import and Crm-1-dependent export signals. We postulated that the presence of DcpS in both cellular compartments and its ability to hydrolyze cap structure may impact other cellular events dependent on cap-binding proteins. An shRNA-engineered cell line with markedly diminished DcpS levels led to a corresponding reduction in cap-proximal intron splicing of a reporter minigene and endogenous genes. The impaired cap catabolism and resultant imbalanced cap concentrations were postulated to sequester the cap-binding complex (CBC) from its normal splicing function. In support of this explanation, DcpS efficiently displaced the nuclear cap-binding protein Cbp20 from cap structure, and complementation with Cbp20 reversed the reduced splicing, indicating that modulation of splicing by DcpS is mediated through Cbp20. Our studies demonstrate that the significance of DcpS extends beyond its well-characterized role in mRNA decay and involves a broader range of functions in RNA processing including nuclear pre-mRNA splicing.  相似文献   

5.
6.
Eukaryotic cells utilize DcpS, a scavenger decapping enzyme, to degrade the residual cap structure following 3'-5' mRNA decay, thereby preventing the premature decapping of the capped long mRNA and misincorporation of methylated nucleotides in nucleic acids. We report the structures of DcpS in ligand-free form and in a complex with m7GDP. apo-DcpS is a symmetric dimer, strikingly different from the asymmetric dimer observed in the structures of DcpS with bound cap analogues. In contrast, and similar to the m7GpppG-DcpS complex, DcpS with bound m7GDP is an asymmetric dimer in which the closed state appears to be the substrate-bound complex, whereas the open state mimics the product-bound complex. Comparisons of these structures revealed conformational changes of both the N-terminal swapped-dimeric domain and the cap-binding pocket upon cap binding. Moreover, Tyr273 in the cap-binding pocket displays remarkable conformational changes upon cap binding. Mutagenesis and biochemical analysis suggest that Tyr273 seems to play an important role in cap binding and product release. Examination of the crystallographic B-factors indicates that the N-terminal domain in apo-DcpS is inherently flexible, and in a dynamic state ready for substrate binding and product release.  相似文献   

7.
8.
Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5’end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.  相似文献   

9.
10.
We report synthesis and properties of a pair of new potent inhibitors of translation, namely two diastereomers of 7-methylguanosine 5′-(1-thiotriphosphate). These new analogs of mRNA 5′cap (referred to as m7GTPαS (D1) and (D2)) are recognized by translational factor eIF4E with high affinity and are not susceptible to hydrolysis by Decapping Scavenger pyrophosphatase (DcpS). The more potent of diastereomers, m7GTPαS (D1), inhibited cap-dependent translation in rabbit reticulocyte lysate ~8-fold and ~15-fold more efficiently than m7GTP and m7GpppG, respectively. Both analogs were also significantly more stable in RRL than unmodified ones.  相似文献   

11.
Nucleosides and oligonucleotides with an oxygen replaced by sulfur atom are an interesting class of compounds because of their improved stability toward enzymatic cleavage by nucleases. We have synthesized several dinucleotide mRNA cap analogs containing a phosphorothioate moiety in the α, β, or γ position of 5′,5′-triphosphate chain [m7Gp(s)ppG, m7Gpp(s)pG, and m7Gppp(s)G]. These are the first examples of the biologically important 5′mRNA cap analogs containing a phosphorothioate moiety, and these compounds may be useful in a variety of biochemical and biotechnological applications. Incorporation of a sulfur atom in the α or γ position within the dinucleotide cap analog was achieved using PSCl3 in a nucleoside phosphorylation reaction followed by coupling the phosphorothioate of nucleoside with a second nucleotide. Synthesis of cap analogs with the phosphorothioate moiety in β position was performed using an organic phosphorothioate salt in a coupling reaction with an activated nucleotide. The structures of newly synthesized compounds was confirmed using MS and 1H and 31P NMR spectroscopy. We present here the results of preliminary studies on their interaction with translation initiation factor eIF4E and enzymatic hydrolysis with human and nematode DcpS scavengers.  相似文献   

12.
13.
A spliced leader contributes the mature 5'ends of many mRNAs in trans-splicing organisms. Trans-spliced metazoan mRNAs acquire an m3(2,2,7)GpppN cap from the added spliced leader exon. The presence of these caps, along with the typical m7GpppN cap on non-trans-spliced mRNAs, requires that cellular mRNA cap-binding proteins and mRNA metabolism deal with different cap structures. We have developed and used an in vitro system to examine mRNA degradation and decapping activities in nematode embryo extracts. The predominant pathway of mRNA decay is a 3' to 5' pathway with exoribonuclease degradation of the RNA followed by hydrolysis of resulting mRNA cap by a scavenger (DcpS-like) decapping activity. Direct decapping of mRNA by a Dcp1/Dcp2-like activity does occur, but is approximately 15-fold less active than the 3' to 5' pathway. The DcpS-like activity in nematode embryo extracts hydrolyzes both m7GpppG and m3(2,2,7)GpppG dinucleoside triphosphates. The Dcp1/Dcp2-like activity in extracts also hydrolyzes these two cap structures at the 5' ends of RNAs. Interestingly, recombinant nematode DcpS differs from its human ortholog in its substrate length requirement and in its capacity to hydrolyze m3(2,2,7)GpppG.  相似文献   

14.
The Tgs proteins are structurally homologous AdoMet-dependent eukaryal enzymes that methylate the N2 atom of 7-methyl guanosine nucleotides. They have an imputed role in the synthesis of the 2,2,7-trimethylguanosine (TMG) RNA cap. Here we exploit a collection of cap-like substrates to probe the repertoire of three exemplary Tgs enzymes, from mammalian, protozoan, and viral sources, respectively. We find that human Tgs (hTgs1) is a bona fide TMG synthase adept at two separable transmethylation steps: (1) conversion of m7G to m2,7G, and (2) conversion of m2,7G to m2,2,7G. hTgs1 is unable to methylate G or m2G, signifying that both steps require an m7G cap. hTgs1 utilizes a broad range of m7G nucleotides, including mono-, di-, tri-, and tetraphosphate derivatives as well as cap dinucleotides with triphosphate or tetraphosphate bridges. In contrast, Giardia lamblia Tgs (GlaTgs2) exemplifies a different clade of guanine-N2 methyltransferase that synthesizes only a dimethylguanosine (DMG) cap structure and cannot per se convert DMG to TMG under any conditions tested. Methylation of benzyl7G and ethyl7G nucleotides by hTgs1 and GlaTgs2 underscored the importance of guanine N7 alkylation in providing a key π-cation interaction in the methyl acceptor site. Mimivirus Tgs (MimiTgs) shares with the Giardia homolog the ability to catalyze only a single round of methyl addition at guanine-N2, but is distinguished by its capacity for guanine-N2 methylation in the absence of prior N7 methylation. The relaxed cap specificity of MimiTgs is revealed at alkaline pH. Our findings highlight both stark and subtle differences in acceptor specificity and reaction outcomes among Tgs family members.  相似文献   

15.
Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.  相似文献   

16.
Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.  相似文献   

17.
18.
A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5′-mRNA cap, i.e., m7GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m7GMP (or m2,7GMP) as one of the reaction products. Interestingly, m7Gpppm3N6, N6, 2′OA was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m7Gpppm3N6, N6, 2′OApm2′OApm2′OCpm2N3, 2′OU, that occurs in these organisms.  相似文献   

19.
Synthesis of Leishmania mRNA 5′-cap analogs, m 7 Gpppm 2 6 AmpAm (cap-2), and m 7 Gpppm 2 6 AmpAmpCm (cap-3) is reported. Binding affinities of those cap analogs for LeishIF4E proteins were determined using fluorescence spectroscopy. Cap-3 showed similar affinity to LeishIF4Es compared to the mature trypanosomatids cap structure (cap-4).  相似文献   

20.
A method is described for the determination of 5′-terminal methylated (cap) structures in unlabeled mRNA based on oxidation with NaIO4, reduction with NaB[3H]4, cleavage with P1 nuclease, and separation on a strong anion-exchange resin by high-performance liquid chromatography (hplc). Model compounds (cap 1 dinucleotides) were used to show that no structural alteration other than cleavage of the ribose ring of 7-methylguanosine occurred under the conditions used for oxidation and reduction. It was shown that the enzyme tobacco acid pyrophosphatase could be used to cleave cap dinucleotides containing unmodified or ring-opened ribose moieties and could also be used to release [3H]pm7G′ from NaB[3H]4-labeled rabbit globin mRNA. All five known cap 1 dinucleotides were resolved by hplc. The cap of rabbit globin mRNA was identified as m7Gpppm6Am, in agreement with other methods of determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号