首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
白纹伊蚊和埃及伊蚊经卵传递登革病毒的研究   总被引:11,自引:0,他引:11  
白纹伊蚊和埃及伊蚊通过吸食病毒液或叮吸有病毒血症的小鸡血后,能感染登革1-4型病毒,并能在蚊体内增殖,对感染雌蚊了1和子2代幼虫,雌性或雄性成虫4559只,分101批进行了病毒检测,白纹伊蚊子1代的批阳性率;登革1型为10%(1/10)2型为22.22%(2/9)3型为33.33%(4/12),4型为28.95%(11/38)登革1~4型的最低子代感染率依次主国0.20%,0.71%,0.70%和  相似文献   

2.
在云南省西南边境9县市捕获伊蚊属雌性成蚊16种19367只,用细胞法和乳鼠法分离病毒。从185批6491只白纹伊蚊中分离到病毒2株,从50批1605只剌扰伊蚊中分离到病毒2株,从23批772只窄翅伊蚊中分离到病毒2株,从4批103只阿萨姆伊蚊中分离到病毒1株。其它12种共10396只伊蚊的病毒分离物为阴性。分离到的7株病毒经免疫荧光、酶免疫、血凝抑制和中和试验鉴定,均为乙型脑炎病毒(JEvirus)。白纹伊蚊是野外竹林的优势蚊种。分析认为白纹伊蚊在当地乙型脑炎病毒保存和传播中起重要作用,刺扰伊蚊、窄翅伊蚊和阿萨姆伊蚊亦可参与该病毒的传播。  相似文献   

3.
在云南省西南边境9县市捕获伊蚊属雌性成蚊16种19367只,用细胞法和乳鼠法分离病毒.从185批6491只白纹伊蚊中分离到病毒2株,从50批1605只剌扰伊蚊中分离到病毒2株,从23批772只窄翅伊蚊中分离到病毒2株,从4批103只阿萨姆伊蚊中分离到病毒1株.其它12种共10396只伊蚊的病毒分离物为阴性.分离到的7株病毒经免疫荧光、酶免疫、血凝抑制和中和试验鉴定,均为乙型脑炎病毒(JE virus).白纹伊蚊是野外竹林的优势蚊种.分析认为白纹伊蚊在当地乙型脑炎病毒保存和传播中起重要作用,刺扰伊蚊、窄翅伊蚊和阿萨姆伊蚊亦可参与该病毒的传播.  相似文献   

4.
【目的】建立白纹伊蚊Aedes albopictus抗溴氰菊酯的蚊虫品系,对比白纹伊蚊敏感株和抗性株对登革病毒的易感性差异。【方法】采用浸渍法测定溴氰菊酯对白纹伊蚊幼虫的半数致死浓度(LC_(50));再以LC_(50)水平的溴氰菊酯对白纹伊蚊幼虫进行群体筛选至第11代,并通过接触筒法检测各代成蚊抗性。以白纹伊蚊敏感株和获得的抗性株(第9代)雌蚊吸食含2型登革病毒(DENV-2)的血餐,于感染后0,4,7和10 d解剖蚊虫,收集中肠、卵巢和唾液腺,通过RT-PCR和实时荧光定量PCR分别检测各组织的DENV-2病毒感染率和感染量。【结果】白纹伊蚊经溴氰菊酯筛选至第9代后抗性趋于稳定。第9代抗性株幼虫的LC_(50)为0.053 mg/L,抗性倍数为10.58,成蚊生测的蚊虫死亡率为80%,已达到中度抗性。感染后0 d,所有蚊虫的中肠均可测得DENV-2,而且抗性株的平均病毒感染量高于敏感株;后续时间点敏感株与抗性株蚊虫中肠均保持92.75%~97.18%的病毒感染率,且二株之间无显著性差异(P0.05)。感染后4 d,两株蚊虫的卵巢中均可检测到DENV-2,感染后7 d和10 d的卵巢病毒感染率均显著高于4 d时(P0.05),但在7 d和10 d两个时间点,敏感株和抗性株之间均无统计学差异(P0.05),然而抗性株平均病毒感染量在每一个时间点都显著高于敏感株(P0.05)。蚊虫唾液腺于感染后7 d检测到DENV-2,10 d时唾液腺的病毒感染率无明显升高且两株蚊虫之间病毒感染率和感染量均无统计学差异(P0.05)。【结论】经溴氰菊酯的筛选使白纹伊蚊幼虫及成蚊抗性水平逐渐升高,建立了白纹伊蚊抗溴氰菊酯的实验室品系。DENV-2对白纹伊蚊抗性株和敏感株各个组织的感染率相近,但感染量有所不同,说明对溴氰菊酯有中度抗性的白蚊伊蚊对登革病毒的易感性在一定程度上发生了改变。  相似文献   

5.
近年来福建省登革热(Dengue fever,DF)输入性病例持续存在,且登革热的主要传播媒介白纹伊蚊在全省内广泛分布,为了解福建省福州市登革热的媒介白纹伊蚊携带登革病毒(Dengue virus,DENV)状况,2017年10月7日在福州市台江区元一花园小区内开展伊蚊监测,采用双层叠帐法捕获255只白纹伊蚊蚊体研磨液上清提取核酸后用实时荧光RT-PCR法检测DENV特异性核酸,将检测阳性的蚊体研磨液上清接种C6/36细胞进行病毒分离,成功分离到1株DENV病毒株mosquito13/Fujian/2017;经实时荧光RT-PCR法鉴定所分离病毒株的血清型为I型;利用型特异性引物通过RT-PCR扩增病毒E基因并测序进行分子遗传特性分析;E基因核苷酸和氨基酸同源性分析显示,该毒株与2017年10月17日同小区本地登革热病例血清中分离得到的登革毒株E基因序列完全一致,与越南2014年分离株KT825033/Vietnam/2014核苷酸(99.7%)和氨基酸(99.8%)同源性最高;系统进化树分析表明所分离登革病毒毒株的基因型为I型,与东南亚地区的越南,泰国,柬埔寨等国家进化关系相近,可能输入来源于东南亚国家。本研究证实了登革热外潜伏期的存在以及白纹伊蚊在登革热疫情传播过程中的媒介作用,提示在登革热的防控工作中媒介登革病毒监测、检测的重要性,也提示福建省需要加强输入来源监测,特别是东南亚入境人员的监测。  相似文献   

6.
在自然界存在两种登革热传播模式:人-伊蚊-人循环,蚊媒是埃及伊蚊与白纹伊蚊。猴-伊蚊-猴循环,蚊媒是白纹伊蚊与白雪伊蚊群。我国学者首先于1975年从无输入性病例的我国西南边疆山林地区的白纹伊蚊体内分离到登革热病毒4型,白纹伊蚊承担两种传播模式的中介。本研究介绍了埃及伊蚊与白纹伊蚊的生态习性与全球及在中国的分布。认为在我国厦门地区迄今为止还未曾发现过埃及伊蚊的存在,也简介了沃尔巴克体新技术防控蚊媒研究的进展。  相似文献   

7.
基孔肯雅热(chikungunya fever)是由基孔肯雅病毒(chikungunya virus)引起的一种蚊媒传染病,感染率高,可引起持续的关节症状。近几年来,基孔肯雅热暴发次数增加,流行范围不断扩大,全球范围内每年可导致100万人感染。同时,基孔肯雅病毒中某些基因突变使其可有效通过白纹伊蚊传播,不仅对热带和亚热带地区,还对白纹伊蚊广泛存在的温带地区的民众构成了潜在威胁。  相似文献   

8.
登革Ⅱ型病毒经白纹伊蚊滞育卵的传递   总被引:7,自引:1,他引:6  
采用C6/36细胞培养分离病毒的方法检测感染登革Ⅱ型病毒的白纹伊蚊Aedes albopictus滞育卵孵化的F1代蚊虫感染率,从第一个生殖营养周期子代蚊虫中未分离到病毒,第二与第三生殖营养周期子代蚊虫最低感染率没有显著性差异(χ2=0.01,P>0.0 5),感染子代的批阳性率为9.1%,最低感染率为1∶330;间接免疫荧光检测结果表明感染登革Ⅱ型病毒的白纹伊蚊滞育卵孵化的子代成蚊能通过叮咬将登革病毒传播给敏感乳鼠。这些研究结果表明登革病毒能在媒介滞育卵内存活并传至子代,子代蚊虫能通过叮咬敏感宿主水平传播病毒。  相似文献   

9.
白纹伊蚊垂直传播乙型脑炎病毒的研究   总被引:14,自引:0,他引:14  
用5株乙型脑炎病毒(JEvirus)经口感染白纹伊蚊,证明该蚊能感染和传播乙型脑炎病毒,对感染雌蚊的1和子2代卵3443粒,幼虫7021只和成虫4853只,分171批检查乙型脑炎病毒,子1代的批阳性率,卵为46.67%(14/30),幼虫为21.21%(7/33)。雌性成虫为23.78%(9/38),雄性成虫为15.00%(3/20);子2代幼虫,雌性和雄性成虫和批阳性率依次为23.53%(4/1  相似文献   

10.
自Singh建立蚊细胞以来,为虫媒病毒的研究提供了新方法。singh又进行了白纹伊蚊和埃及伊蚊细胞株的比较,认为白纹伊蚊细胞更敏感,应用于虫媒病毒的分离得到满意的结果。我所1978年建立了一株白纹伊蚊细胞株,对登革病毒增殖较好。1979年我们从当地扑获蚊虫,建立了一株云南白纹伊蚊细胞株(ACY7),对登革、基孔肯亚病毒进行敏感性及增殖规律的观察,现将结果报告如下:  相似文献   

11.
白纹伊蚊和埃及伊蚊经卵传递基孔肯雅病毒的研究   总被引:5,自引:0,他引:5  
张海林  张云智 《病毒学报》1993,9(3):222-227
  相似文献   

12.
The susceptibility of Aedes aegypti to Ascogregarina culicis and Aedes albopictus to Ascogregarina taiwanensis was examined with mosquito and parasite strains from Tampa, FL. When each host was bioassayed with its natural gregarine, the infection intensity indicated that Ae. aegypti was 59% more susceptible to A. culicis (87 gamonts/larva) than Ae. albopictus to A. taiwanensis (47 gamonts/larva). Infections in single and mixed host populations exposed to 100 oocysts/larva of one and both parasites demonstrated that Ae. aegypti harbors higher A. culicis gamont loads than Ae. albopictus of A. taiwanensis. In dual gregarine exposures of single host populations, the A. culicis infection intensity in Ae. aegypti was reduced by approximately 50%. A. taiwanensis exhibited the same capability of infecting Ae. albopictus in single and dual exposures. In mixed host populations there were no cross infections, but A. taiwanensis in Ae. albopictus produced an infection intensity of approximately 70% lower than that of A. culicis in Ae. aegypti.  相似文献   

13.
Dengue, the most important human arboviral disease, is transmitted primarily by Aedes aegypti and, to a lesser extent, by Aedes albopictus. The current distributions of these invasive species overlap and are affected by interspecific larval competition in their container habitats. Here we report that competition also enhances dengue infection and dissemination rates in one of these two vector species. We determined the effects of competition on adult A. aegypti and A. albopictus, comparing their susceptibility to infection with a Southeast Asian strain of dengue-2 virus. High levels of intra- or interspecific competition among larvae enhanced the susceptibility of A. albopictus to dengue virus infection and potential for transmission, as indicated by disseminated infections. Doubling the number of competing larvae (A. albopictus or A. aegypti), led to a significant (more than 60%) increase in the proportion of A. albopictus with disseminated dengue-2 infection. Competition-enhanced vector competence appears to result from a reduction in 'barriers' (morphological or physiological) to virus infection and dissemination and may contribute to the importance of A. albopictus in dengue transmission. Similar results for other unrelated arboviruses suggest that larval competition, common in mosquitoes, should be considered in estimates of vector competence for pathogens that infect humans.  相似文献   

14.
Oral susceptibility and vertical transmission of dengue virus type 2 (DENV-2) in an Aedes albopictus sample from Rio de Janeiro was estimated. The infection (36.7%) and transmission (83.3%) rates for Ae. albopictus were higher than those of an Ae. aegypti colony used as control, 32.8 and 60%, respectively. Fourth instar larvae and females descendants of 48.5 and 39.1% of experimentally infected Ae. albopictus showed to harbor the virus. The oral susceptibility and the high capacity to assure vertical transmission exhibited by Ae. albopictus from Brazil reinforce that this species may play a role in the maintenance of the virus in nature and be a threat for dengue control in the country.  相似文献   

15.
16.
In 1999 West Nile (WN) virus was introduced to North America where this flavivirus has spread rapidly among wildlife (especially birds) transmitted by various species of mosquitoes (Diptera: Culicidae). Increasing numbers of cases and deaths among humans, horses and other domestic animals require development of effective vaccines. 'ChimeriVax-West Nile(vet)' is being developed for use as a veterinary vaccine to protect against WN infection. This chimeric virus contains the pre-membrane (prM) and envelope (E) genes from the wild-type WN NY99 virus (isolated from a flamingo in New York zoo during the 1999 WN epidemic) in the backbone of yellow fever (YF) 17D vaccine virus. Replication kinetics of ChimeriVax-WN(vet) virus were evaluated in mosquito cell culture (Aedes albopictus C6/36), in WN vector mosquitoes [Culex tritaeniorhynchus Giles, Cx. nigripalpus Theobald and Cx. quinquefasciatus Say (Diptera: Culicidae)] and in YF vectors [Aedes aegypti (L) and Ae. albopictus (Skuse)], to determine whether these mosquitoes become infected through feeding on a viraemic vaccine, and their potential infectivity to transmit the virus. Growth of ChimeriVax-WN(vet) virus was found to be restricted in mosquitoes, compared to WN virus in Ae. albopictus C6/36 cells. When inoculated intrathoracically, ChimeriVax-WN(vet) and YF 17D viruses did not replicate in Cx. tritaeniorhynchus or Cx. nigripalpus; replication was very restricted compared to the wild-type WN virus in Cx. quinquefasciatus, Ae. aegypti and Ae. albopictus. When fed on hanging drops with ChimeriVax-WN(vet) virus (7.7 log10 PFU/mL), none of the Culex mosquitoes became infected; one Ae. albopictus and 10% of the Ae. aegypti became infected, but the titre was very low and virus did not disseminate to head tissue. ChimeriVax-WN(vet) virus had a replication profile similar to that of the attenuated vaccine virus YF 17D, which is not transmitted by mosquitoes. These results suggest that the natural mosquito vectors of WN and YF viruses, which may incidentally take a bloodmeal from a vaccinated host, will not become infected with ChimeriVax-WN(vet) virus.  相似文献   

17.
We asked whether climate change might affect the geographic distributions of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). We tested the effects of temperature, diet and the presence of congeneric species on the performance of immature stages of these two aedine species in the laboratory. Mosquitoes in three different species-density combinations were reared at four constant temperatures (20 °C, 25 °C, 30 °C, 35 °C) on low- or high-level diets. Of the four temperatures tested, mortality increased only at 35 °C in both species. Mortality was higher on the high-level diet than on the low-level diet at 35 °C, but not at other temperatures. The presence of congeneric species had a significant positive effect on mortality in Ae. albopictus, but not in Ae. aegypti. Both species developed more quickly at higher temperatures within the range of 20-30 °C; development was not enhanced at 35 °C. Population growth of Ae. albopictus was more stable, regardless of diet and temperature; that of Ae. aegypti varied more according to these two factors. These species-specific attributes may help to explain the latitudinal distribution of the mosquitoes and degree of species dominance where they are sympatric.  相似文献   

18.
Ascogregarina culicis and Ascogregarina taiwanensis are common gregarine parasites of Aedes aegypti and Aedes albopictus mosquitoes, respectively. These mosquito species are also known to transmit dengue and Chikungunya viruses. The sporozoites of these parasites invade the midgut epithelial cells and develop intracellularly and extracellularly in the gut to complete their life cycles. The midgut is also the primary site for virus replication in the vector mosquitoes. Therefore, studies were carried out with a view to determine the possible role of these gregarines in the vertical transmission of dengue and Chikungunya viruses from larval to adult stage. Experiments were performed by exposing first instar mosquito larvae to suspensions containing parasite oocysts and viruses. Since Ascogregarina sporozoites invade the midgut of first instar larvae, the vertical transmission was determined by feeding the uninfected first instar larvae on the freshly prepared homogenates from mosquitoes, which were dually infected with viruses and the parasite oocysts. Similarly, the role of protozoan parasites in the vertical transmission of viruses was determined by exposing fresh first instar larvae to the dried pellets of homogenates prepared from the mosquitoes dually infected with viruses and the parasite oocysts. Direct vertical transmission and the vertical transmission of CHIK virus through the oocyst of the parasites were observed in the case of Ae. aegypti mosquitoes. It is suggested that As. culicis may have an important role in the maintenance of CHIK virus during the inter-epidemic period.  相似文献   

19.
The aim of the study was to determine the existence of Ascogregarina spp. in larvae of Aedes albopictus and Aedes aegypti collected in urban and suburban areas of Manaus, Amazon region, Brazil. Between May 2004 and July 2005, the mid-gut of 3rd and 4th instar larvae, collected in tire traps in six neighborhoods of Manaus, was examined for the presence of trophozoites of Ascogregarina. Coexistence of Ae. albopictus larvae infected by A. taiwanensis, and Ae. aegypti larvae by A. culicis, was detected in traps in the field. The percentage of Ae. albopictus larvae infected by A. taiwanensis ranged from 21% to 93.5% and of Ae. aegypti larvae infected by A. culicis from 22% to 95%. The mean infection intensity was similar in both species of Aedes. In traps located in Mauazinho, the replacement of Ae. aegypti by Ae. albopictus larvae was observed. In Manaus, Ae. albopictus larvae were parasitized by A. taiwanensis, and Ae. aegypti larvae by A. culicis. Infection rates were high when the species of Aedes were found separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号