首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A current hypothesis is that endo--mannanase activity in the endosperm cap of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds is induced by gibberellin (GA) and weakens the endosperm cap thus permitting radicle protrusion. We have tested this hypothesis. In isolated parts, the expression of endo--mannanase in the endosperm after germination is induced by GAs, but the expression of endo--mannanase in the endosperm cap prior to radicle protrusion is not induced by GAs. Also, abscisic acid (ABA) is incapable of inhibiting endo--mannanase activity in the endosperm cap, even though it strongly inhibits germination. However, ABA does inhibit enzyme activity in the endosperm and embryo after germination. There are several isoforms in the endosperm cap and embryo prior to radicle protrusion that are tissue-specific. Tissue prints showed that enzyme activity in the embryo spreads from the radicle tip to the cotyledons with time after the start of imbibition. The isoform and developmental patterns of enzyme activity on tissueprints are unaffected when seeds are incubated in ABA, even though germination is inhibited. We conclude that the presence of endo--mannanase activity in the endosperm cap is not in itself sufficient to permit tomato seeds to complete germination.Abbreviations ABA cis/trans-abscisic acid - GA(s) gibberellin(s) - IEF isoelectric focussing - pI(s) isoelectric point(s) We thank Dr. Bruce Downie for the seemingly endless but inspiring discussions.  相似文献   

2.
A comparative study of protein synthesis has been carried out with embryos excised from dormant (D) and non-dormant (ND) caryopses of the wild oat. Although D embryos imbibed in water or ND embryos imbibed in abscisic acid do not germinate, they incorporate [14C]leucine into TCA-insoluble material for the first 48 h as readily as embryos that do germinate (ND embryos imbibed in water, or D embryos imbibed in gibberellic acid). Pulsechase experiments with [14]leucine show that in both D and ND embryos the proteins associated with the membranes undergo turnover. The rates of decay of incorporated radioactivity are similar in both dormant and germinating embryos up to 98 h following embryo excision. Fractionation of the membrane proteins in SDS-polyacrylamide gels indicates that the different polypeptides have different rates of turnover. It is concluded that membrane proteins in imbibed D embryos are in a state of constant turnover, and that this is a part of the replacement processes necessary to maintain the integrity of hydrated cells. The continuation of such synthetic events could account for long term survival of dormant Avena fatua in the imbibed state.Abbreviations CCRSE cytochrome relative stain equivalents - D dormant - ND nondormant - ABA abscisic acid - GA gibberellic acid GA3  相似文献   

3.
P. Halmer  J. D. Bewley  T. A. Thorpe 《Planta》1976,130(2):189-196
Summary Lettuce seeds (Lactuca sativa L. cv. Grand Rapids) stimulated to germinate by gibberellin and red light produce large amounts of endo--mannanase. This enzyme increases markedly following radicle emergence and is capable of degrading mannose-containing polysaccharides, which are the major components of the endosperm cell wall. Non-germinated seeds contain little enzyme and under conditions where gibberellin- or red light-stimulated germination is prevented (eg. by abscisic acid or prolonged far red light) enzyme levels remain low. Cycloheximide inhibits the increase in enzyme levels when supplied to germinating seeds, but the enzyme once produced is stable in vivo in the presence of this inhibitor for at least 24h. The majority of the extractable mannanase activity is located in the endosperm and we propose that the function of this enzyme is to mobilise the endosperm cell wall polysaccharides as a nutrient source for the growing embryo.Abbreviations ABA abscisic acid - BA benzyladenine - GA gibberellic acid  相似文献   

4.
Using lettuce (Lactuca sativa L., cv. Grand Rapids) embryos in osmotica, we have demonstrated that when the growth rates of the embryonic axes of seeds treated with red (R) or far-red (FR) light are equalized, the axes of R-treated seeds develop a 3.4-bar decrease in water potential (paper No. III).As axial growth begins, reserve protein and phytin decrease rapidly, concomitant with increases in reducing sugars, -amino nitrogen, and inorganic and esterified soluble phosphates. However, no differences between the axes of R-and FR-treated seeds are found with respect to the changes in these compounds, indicating that these changes arise as a result of growth and are not under immediate phytochrome control. Little change in the total lipid content is found in either treatment. The axes of FR-treated seeds hydrolyze endogenous sucrose at a greater rate thant those of R-treated seeds. Axes of R-treated seeds accumulate K+ and Na+ to a greater extent than those of FR-treated seeds. When potassium salts are added to the incubation medium, R induces increased K+ uptake by the axis and greater medium acidification by the axis. Malate and other organic acids and acidic amino acids increase at equal rates in both treatments, indicating that inorganic anions may also be taken up to balance the ionic charges. The results are compatible with the assumption that changes in the osmotic and pressure potentials of the embryonic axes of R-treated seeds are the result of a phytochrome-stimulated proton pump which, in whole dormant seeds, would initiate water-potential changes allowing the embryos to overcome the mechanical restraint of the surrounding seed layers, resulting in germination.Abbreviations FR far-red light - PEG polyethylene glyeol 4000 - Pfr far-red-absorbing form of phytochrome - R red light III=Carpita et al. 1979  相似文献   

5.
The occurrence of endo--mannanase in the embryo of germinating and germinated tomato (Lycopersicon esculentum Mill.) seeds was characterized. The endo--mannanase that developed in the embryo consisted of two isoforms and their molecular masses (41 and 42 kDa) did not correspond to the mass (37-39 kDa) of any isoform present in the endosperm. This indicates that mannanase isoforms present in the embryo are embryo-specific. Specific activities (with locust bean galactomannan as substrate) were also different between the embryonic and the endospermic enzymes. The enzyme was absent from the embryo of seeds imbibed for 2 h. With time after imbibition, mannanase content increased until the radicle had just protruded (day 2). However, the increase was transient and the content rapidly decreased thereafter and fell to an undetectable level on day 4. Tissue prints showed that the activity first appeared at the tip part of the radicle and then at the tip of the cotyledon. Thereafter the activity spread through the embryo tissues from the both tip parts.  相似文献   

6.
7.
Under defined environmental conditions (20°C, continuous light of 15 klx) development of mustard seeds from artificial pollination to maturity takes about 60 d. After surpassing the period of embryo cell division and histodifferentiation (12–14d after pollination = dap), the seed enters into a maturation period. The time courses of various physiological, biochemical, and structural changes of embryo and testa during seed maturation were analyzed in detail (dry and fresh mass changes, osmotic and water potential changes, respiration, DNA amplification by endomitosis, total ribosome and polysome formation, storage protein synthesis and accumulation, storage lipid accumulation). In addition to the final storage products protein and lipid, embryo and testa accumulate transiently large amounts of starch within the chloroplasts during early maturation. Concomitantly with the subsequent total breakdown of the starch, the plastids lose most of their internal structure and chlorophyll and shrink into proplastids, typical for the mature seed. At about 30 dap the seeds shift from a desiccation-sensitive to a desiccation-tolerant state and are able then to germinate rapidly upon drying and reimbibition. If isolated from the immature fruit and sown directly on water, the seeds demonstrate precocious germination from about 13 dap onwards. Young seeds (isolated ≦ 38 dap) germinate only after surpassing a lag-phase of several days (after-ripening) during which the embryo continues to accumulate storage protein and lipid at the expense of the surrounding seed tissues. We conclude from these results that the maturing seed represents a rather closed developmental system which is able to continue its development up to successful germination without any specific regulatory influence from the mother plant. Immature seeds are able to germinate without a preceding dehydration treatment, which means that partial or full desiccation does not serve as an environmental signal for reprogramming seed development from maturation to germination. Instead, it is argued that the water relations of the seed are a critical element in the control of maturation and germination: during maturation on the mother plant the embryo is subject to a considerable turgor pressure (of the order of 12 bar) accompanied by a low water potential (of the order of ?12 bar). This turgor permits maturation growth but is subcritical for germination growth. However, upon imbibition in water, the low water potential provides a driving force for a burst of water uptake overcoming the critical turgor threshold and thereby inducing germination.  相似文献   

8.
Lettuce seeds (Lactuca sativa L. cv. Grand Rapids) imbibed in darkness at supra-optimal temperatures (23 ± 1°C) develop a secondary dormancy, termed skotodormancy. The seeds first lose their ability to be promoted to germinate by gibberellic acid, and then lose their ability to be promoted by red light. A combination of red light and gibberellic acid will break skotodormancy for longer than either alone, but red light and benzyladenine together are much more effective. Desiccation of skotodormant seeds does not diminish their dormancy. Embryos dissected from skotodormant seeds will germinate, and are as capable of radicle expansion in the osmoticum polyethylene glycol as are newly-imbibed seeds. Hence skotodormancy is a whole seed dormancy and does not reside within the embryo as an inherent block to germination processes, but as an inability to respond to the stimulation of red light or to hormone.  相似文献   

9.
Effects of high temperature on the germination of maize (Zea mays L.)   总被引:1,自引:0,他引:1  
Graham J. P. Riley 《Planta》1981,151(1):68-74
Poor emergence of maize seedlings, due to high soil temperatures, is a major limitation of crop potential in the lowland tropics. Ability to germinate at high temperature (>c. 37° C) is related to the temperature sensitivity of the embryo, and there is considerable genotypic variation for this character.Respiration and mitochondrial phosphorylation proceed normally in seeds imbibing at 41° C, and ATP levels are adequate for germination. However, the specific activities of several important enzymes are lower, and the rate of protein synthesis is severely reduced compared with seeds imbibing at 28° C. The depression of the rate of protein synthesis in the embryos of several tropical hybrids imbibing at high temperature correlated with their known temperature sensitivity. It is concluded that protein synthesis is an especially temperature sensitive process in germinating maize embryos, and that this is the principal reason for the sensitivity of germinating maize seeds to high temperature.Abbreviations ADP adenosine-5-diphosphate - ATP adenosine-5-triphosphate - BSA bovine serum albumin - EDTA ethylenediaminetetra-acetic acid - HEPES N-2-hydroxyethylpiperazinc-N-2-ethanesulphonic acid - NADH nicotinamide-adenine dinucleotide, reduced form - PPO 2, 5-diphenyloxazole - PVP polyvinylpyrrolidone - SEM standard error of the mean - tris tris (hydroxymethyl)-methylamine  相似文献   

10.
A. Hepher  J. A. Roberts 《Planta》1985,166(3):321-328
Treatment of Trollius ledebouri seeds with gibberellins A4+A7 promotes germination. The efficacy of the treatment is dependent upon the duration of imbibition in distilled water prior to GA4+7 application. Presoaking increases both the final percentage germination attained and also its rate of achievement. No presoaking effect is exhibited by seeds induced to germinate by testa removal in the absence of GA4+7. Active washing of Trollius seeds enhances the presoaking effect and the eluent from washed seeds is inhibitory to germination. The results support the hypothesis that the presoaking effect exhibited by Trollius is the result of the leaching of a germination inhibitor from the seeds which is antagonistic to GA4+7. Additionally, treatment of Trollius seeds with the gibberellin-biosynthesis inhibitor (2-chloroethyl)-trimethylammonium chloride (CCC) prior to testa removal retards germination. The inhibitory effect of CCC on germination is overcome by GA4+7. Although CCC inhibits embryo growth during the presoaking of intact seeds, it does not affect the increased sensitivity of presoaked seeds to GA4+7. Therefore, although endogenous gibberellins may be involved in the germination process, they do not contribute to the presoaking phenomenon. The expansion of isolated endosperm tissue is not affected by CCC. However, the chemical markedly inhibits endosperm expansion in intact seeds and implicates the embryo as both the site of production of the germination inhibitor and of gibberellin. These results are discussed in relation to previous studies and a model is presented to account for the characteristics of germination in Trollius.Abbreviations GA gibberellin - CCC (2-chloroethyl)-trimethylammonium chloride  相似文献   

11.
P. Halmer  J. D. Bewley 《Planta》1979,144(4):333-340
Endo--mannanase (EC 3.2.1.78) is produced and secreted by the cells of the endosperm of lettuce (lactuca sativa L.) seeds (achenes). In imbibed intact seeds, production is prevented by inhibitors. If the endosperm is incubated alone, these inhibitors can be removed by leaching, allowing mannanase production. Abscisic acid, a component of lettuce seeds, inhibits the production of mannanase in the isolated endosperm, and may be involved in regulation of mannanase production in intact seeds. During germination the inhibition is removed, beginning 4–8 h after red-light irradiation, which was given 4 h from sowing. The cotyledons participate in this process, and are controlled by events occuring in the axis within 4 h from red-light irradiation. This control by the axis apparently depends on the exchange of diffusible substances. Both benzyladenine and gibberellic acid can replace the influence of the axis if the latter is removed, and may therefore be involved in the control by the axis of the rest of the seed.Abbreviations ABA abscisic acid - BA 6-benzyladenine - GA3 gibberellic acid - IAA indol-3-yl acetic acid - MES 2-(N-morpholino)ethane sulfonic acid - R red light Part of this work was carried out by P. Halmer at the Department of Biology, Washington University, St. Louis, MO 63130, USA (his present address)  相似文献   

12.
Red light (R) and gibberellins (GA) each induce a water potential decrease in the axes of lettuce (Lactuca sativa L.) embryos resulting in germination of intact seeds (achenes) or an increase in growth of the axes of isolated embryos. The fruit coat and endosperm are a substantial barrier to the penetration of exogeneous GA. Isolated embryos take up 35 times as much [3H]GA1 as the embryos of intact seeds and respond to less than 1·10-10 M GA3 or GA4+7. We calculated that only 1·10-8 M of either GA3 or GA4+7 would result in 50% germination if the GA were able freely to penetrate the fruit coat. Exogenous GA3 or GA4+7, at concentrations insufficient to cause germination, result in an apparent synergistic promotion of germination when suboptimal R is applied. Yet suboptimal concentrations of exogenous GA3 or GA4+7 and suboptimal R result in only additive increases in the growth response in axes of isolated embryos. Dose-response curves demonstrate quantitative increases in the growth response of the isolated axes after R or GA treatments insufficient to induce germination in intact seeds, indicating that a threshold potential must be achieved by the embryonic axes before germination can occur.Abbreviations FR far=red light - GA gibberellin - PEG poly-ethylene glycol 4000 - Pfr far-red-absorbing phytochrome - R red light III.=Carpita et al. 1979b; IV.=Carpita et al. 1979c  相似文献   

13.
Several isoforms of endo-1,4-D-mannanase (EC3.2.1.78) are produced in the endosperm and embryo of tomato (Lycopersicon esculentum Mill.) seed prior to the completion of germination. Other isoforms appear in the embryo and in the lateral endosperm following germination. This occurs in seeds removed from the fruit prior to completion of development at 45 d after pollination and placed directly on water, or following drying. Hence desiccation is not required to induce either germination- or post-germination-related mannanase activity. Incubating seeds in abscisic acid or osmoticum results in a reduction of both germination and total mannanase activity, but the isoforms that are produced in the embryo and micropylar region of the endosperm are identical to those produced in water-imbibed seeds prior to germination. Incubation of seeds in a high concentration of abscisic acid prevents all enzyme production. Only after the completion of germination does mannanase increase in the lateral regions of the endosperm. In contrast, mannanase is produced in the micropylar region regardless of whether the seed germinates or not. The isoforms produced in the two regions of the endosperm are different, those in the lateral endosperm being more similar to those produced in the cotyledons and axes of the embryo. Embryos and endosperms dissected prior to completion of germination and incubated separately produce far fewer isoforms than when these parts are together in the intact seed.Abbreviations ABA cis-abscisic acid - DAP days after pollination - GA gibberellin - IEF isoelectric focusing - PEG polyethyleneglycol - pI isoelectric point This work was supported by Natural Sciences and Engineering Council of Canada grant A2210. B.V. received a fellowship from the Deutscher Akademischer Austauschdienst for her research at the University of Guelph. We are grateful to Dr. H.W.M. Hilhorst, Wageningen, for his critical comments.  相似文献   

14.
Imbibed non-dormant seeds do not germinate immediately after completion of water uptake and reactivation of their metabolism. During the lag-period the seeds apparently undergo processes which are essential for germination. The extent to which these pregerminative processes occur in dormant seeds (freshly harvested seeds) and thermodormant seeds (afterripened seeds imbibed at a supra-optimal temperature) of Agrostemma githago was determined. The pregerminative processes were inhibited almost completely in dormant seeds, but only to 50% or less in thermodormant seeds. When seeds were progressing through the pregerminative processes, the axes showed a higher rate of protein synthesis than axes of blocked seeds. However, this increased rate of protein synthesis was a late event and neither necessary nor sufficient for germination.  相似文献   

15.
The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo--mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.  相似文献   

16.
The weakening of the mechanical restraint of the endosperm layer in tomato (Lycopersicon esculentum Mill.) seeds, a prerequisite for germination, has been studied with the use of seeds of the gibberellin (GA)-deficientgib-1 mutant. Incubation ofgib-1 endosperms, including part of the testa, in 10 M GA4+7, resulted within 12 h in the release of fructose, glucose, galactose and mannose into the incubation medium. Only small amounts of sugars diffused out of thegib-1 endosperms during incubation in water. Chemical hydrolysis of endosperm cell walls ofgib-1 seeds showed that they are mainly composed of mannose, and smaller quantities of glucose and galactose. Treatment with GA4+7 induced in the endosperms the production of endo--mannanase activity that was not detectable during incubation in water, and also increased the activities of mannohydrolase and -galactosidase as compared with the water controls. No cellulase activity was found. It is concluded that in tomato seeds the weakening of endosperms prior to radicle protrusion is mediated by a GA-induced enzymatic degradation of the mannan-rich cell walls.Abbreviation GA(s) gibberellin(s)  相似文献   

17.
18.
This study was conducted on barley cv. Ars. caryopses collected at full ripeness and divided into two batches. From one batch (dormant caryopses) polysomes were isolated from embryos immediately after harvesting and after two days of germination. From the other batch (non-dormant caryopses) the same was done after eight months storage in a dry state. A low ionic strength cytoskeleton-stabilizing buffer was used for the isolation of polysomes. Four different fractions of polysomes were examined: free polysomes (FP), membrane-bound polysomes (MBP), cytoskeleton-bound polysomes (CBP) and cytoskeleton-membrane-bound polysomes (CMBP). In germs grown from non-dormant caryopses, the first two fractions (FP + MBP) made up about 78 % of the total ribosomal material, whereas in embryos of dormant, imbibed caryopses, two last fractions (CBP + CMBP) made up about 71 %. The percentage of polysomes after 48 hours of imbibition of dormant caryopses in the FP, MBP and CBP was only about 13 % (i.e., 87 % monosomes), whereas a greater proportion (19.4 %) was found in the CMBP. The highest incorporation of 3H-uridine and 14C-amino acids (after 48 hours of germination and 0.5, 3 and 6 hrs incubation with precursors) took place in trhc CMBP both in dormant and non-dormant caryopses The major amount of the two polysome fractions associated with the cytoskeleton (CBP and CMBP) and the higher activity of CMBP in protein synthesis in embryos of dormant, imbibed triticale caryopses may indicate a significant role for polysomes associated with the cytoskeleton in the control of protein synthesis in dormant and germinating caryopses.  相似文献   

19.
Nonstructural carbohydrates in dormant and afterripened wild oat caryopses   总被引:1,自引:0,他引:1  
Nonstructural carbohydrates were determined in both embryo and endosperm of dormant (nongerminating) and afterripened (germinating) intact caryopses of wild oat ( Avena fatua L.). No changes in endosperm starch or soluble sugar were observed at the onset of germination (18 h). No changes in glucose, fructose, sucrose or starch within dormant or afterripened embryos correlated with onset of visual germination. In afterripened embryos, depletion of raffinose (18 h), stachyose (18 h) and galactose (24 h) was correlated with germination. In contrast, raffinose-family oligosaccharide levels in dormant embryos remained constant for 7 days following imbibition. Germination of isolated dormant embryos on 88 m M galactose-containing media was accompanied by decreased endogenous levels of raffinose and stachyose. Isolated embryos from dormant caryopses incorporated 14C from 14C-fructose into both raffinose and stachyose during 24 h of imbibition. In contrast, no 14C incorporation into stachyose was observed in embryos from afterripened caryopses. No 14C incorporation into raffinose was observed at 18 and 24 h. When in vitro activities of α galactosidase were measured, no temporal differences between dormant or afterripened caryopses were detected in either embryo or endosperm tissue. Although the mechanism associated with differences in utilization of raffinose and stachyose is yet unidentified, alterations in raffinose-family oligosaccharide metabolism in the embryo appear to be a unique prerequisite for afterripening-induced germination.  相似文献   

20.
The effect of matriconditioning, the physiological presowing seed technique, using Micro-Cel E on Allium cepa L. cv. Czerniakowska seed quality was studied. Several ratios of seeds, carrier, water and time of priming were tested. The most effective treatment for improving onion seed germination at most tested temperatures was priming to a ratio of 2 g seed:1 g Micro-Cel:3 g water for 5 days in light at 15 °C. Matriconditioning greatly improved the germination and emergence percentage, seedling fresh and dry weight and reduced electrolyte leakage compared to that of untreated seeds; this beneficial effect was especially evident at suboptimal temperatures. Matriconditioning improved the germinability of aged seeds, the effect being more pronounced in the more aged seeds. No significant differences in ethylene production by primed and non-primed seeds were observed in the absence of its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), but its presence during imbibition caused an increase in ethylene production; an enhanced activity of in vivo ACC oxidase in Allium cepa matriconditioned seeds in comparison to untreated seeds, indicates that the endogenous level of ACC is a limiting factor of ethylene production. Likewise, the activity of ACC oxidase isolated from matriconditioned seeds was higher than that from untreated seeds. Higher endo--mannanase and total dehydrogenase activities were observed in primed air-dried seeds in comparing to non-primed seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号