首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species.  相似文献   

3.
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators'' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators'' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators'' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators'' suppressive effects on mesopredators extend to alleviate both mesopredators'' consumptive and non-consumptive effects on prey.  相似文献   

4.
Predators can affect prey in two ways—by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator–prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male “risk” predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29 % compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24 % less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey’s response. Volatile odor cues from predators reduced beetle feeding by 10 % overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment.  相似文献   

5.
6.
There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression. In the first experiment, we manipulated access of natural populations of predators (primarily lady beetles) to controlled numbers of A. glycines on upper (i.e. vigorous-growing) versus lower (i.e. slow-growing) soybean nodes and under contrasting plant ages. In a second experiment, we measured aphid dispersion in response to predation. Bottom-up and top-down controls had additive effects on A. glycines population growth. Plant age and within-plant quality had significant bottom-up effects on aphid size and population growth. However, top-down control was the dominant force suppressing aphid population growth, and completely counteracted bottom-up effects at the plant and within-plant scales. The intensity of predation was higher on upper than lower soybean nodes, and resulted in a non-consumptive reduction in aphid population growth because most of the surviving aphids were located on lower plant nodes, where rates of increase were reduced. No effects of predation on aphid dispersal among plants were detected, suggesting an absence of predator avoidance behavior by A. glycines. Our results revealed significant non-consumptive predator impacts on aphids due to the asymmetric intensity of predation at the within-plant scale, suggesting that low numbers of predators are highly effective at suppressing aphid populations.  相似文献   

7.
8.
While there is increasing interest in non-consumptive effects of predators on prey, physiological effects are understudied. While physiological stress responses play a crucial role in preparing escape responses, the increased metabolic rates and shunting of energy away from other body functions, including antioxidant defence, may generate costs in terms of increased oxidative stress. Here, we test whether predation risk increases oxidative damage in Enallagma cyathigerum damselfly larvae. Under predation risk, larvae showed higher lipid peroxidation, which was associated with lower levels of superoxide dismutase, a major antioxidant enzyme in insects, and higher superoxide anion concentrations, a potent reactive oxygen species. The mechanisms underlying oxidative damage are likely to be due to the shunting of energy away from antioxidant defence and to an increased metabolic rate, suggesting that the observed increased oxidative damage under predation risk may be widespread. Given the potentially severe fitness consequences of oxidative damage, this largely overlooked non-consumptive effect of predators may be contributing significantly to prey population dynamics.  相似文献   

9.
The role of physiology in mediating the growth/predation risk trade‐off has been largely ignored. We examined effects of predation risk on relationships between growth and storage molecules in Enallagma aspersum and Ischnura verticalis damselfly larvae that differ in this trade‐off. In laboratory and field experiments, both species had similar growth and mortality rates and similar concentrations of storage molecules in the absence of mortality threats. However, in the presence of dragonfly predators Ischnura larvae had higher mortality rates and grew faster than Enallagma larvae. Consistent with the difference in growth rate, Enallagma's total protein concentrations decreased under predation risk while those of Ischnura did not. Glucose and glycogen concentrations were not affected, while triglyceride concentrations were lower under predation risk in Enallagma but not in Ischnura. Species differences at the physiological level to the presence of mortality threats may be crucial to understanding patterns in metamorphic and post‐metamorphic traits.  相似文献   

10.
Predators are known to have both consumptive and non-consumptive effects (NCEs) on their prey that can cascade to affect lower trophic levels. Non-consumptive interactions often drive these effects, though the majority of studies have been conducted in aquatic- or herbivory-based systems. Here, we use a laboratory study to examine how linkages between an above-ground predator and a detritivore influence below-ground properties. We demonstrate that predators can depress soil metabolism (i.e. CO2 flux) and soil nutrient content via both consumptive and non-consumptive interactions with detritivores, and that the strength of isolated NCEs is comparable to changes resulting from predation. Changes in detritivore abundance and activity in response to predators and the fear of predation likely mediate interactions with the soil microbe community. Our results underscore the need to explore these mechanisms at large scales, considering the disproportionate extinction risk faced by predators and the importance of soils in the global carbon cycle.  相似文献   

11.
Predators influence prey populations both by consuming individual prey, and by inducing changes in prey behaviour that limit reproduction and survival. Because prey trade-off predation risk for forageing gains, the magnitude of predators' non-consumptive effects should depend on resource availability. Studies of non-consumptive effects generally adopt either of two strategies: (i) maintaining a static ration of the prey's resources; and (ii) using resource populations that vary dynamically in response to prey behaviour. Contrasting these experimental designs using meta-analysis, we evaluated whether resource dynamics influence the magnitude of non-consumptive effects on prey growth, survival, fecundity, population density, forageing rate and habitat use. Predators had a more negative effect on prey demography in dynamic- vs. static-resource experiments. Our results highlight the importance of resource dynamics in mediating the magnitude of non-consumptive effects of predators on prey, and illustrate the often-unintended impacts of experimental design on estimates of effect size in ecological interactions.  相似文献   

12.
Predators have a key role shaping competitor dynamics in food webs. Perhaps the most obvious way this occurs is when predators reduce competitor densities. However, consumption could also generate phenotypic selection on prey that determines the strength of competition, thus coupling consumptive and trait‐based effects of predators. In a mesocosm experiment simulating fish predation on damselflies, we found that selection against high damselfly activity rates – a phenotype mediating predation and competition – weakened the strength of density dependence in damselfly growth rates. A field experiment corroborated this finding and showed that increasing damselfly densities in lakes with high fish densities had limited effects on damselfly growth rates but generated a precipitous growth rate decline where fish densities were lower – a pattern expected because of spatial variation in selection imposed by predation. These results suggest that accounting for both consumption and selection is necessary to determine how predators regulate prey competitive interactions.  相似文献   

13.
Survival of enteric bacteria in aquatic habitats varies depending upon species, strain, and environmental pressures, but the mechanisms governing their fate are poorly understood. Although predation by protozoa is a known, top-down control mechanism on bacterial populations, its influence on the survival of fecal-derived pathogens has not been systematically studied. We hypothesized that motility, a variable trait among pathogens, can influence predation rates and bacterial survival. We compared the survival of two motile pathogens of fecal origin by culturing Escherichia coli O157 and Salmonella enterica Typhimurium. Each species had a motile and non-motile counterpart and was cultured in outdoor microcosms with protozoan predators (Tetrahymena pyriformis) present or absent. Motility had a significant, positive effect on S. enterica levels in water and sediment in the presence or absence of predators. In contrast, motility had a significant negative effect on E. coli O157 levels in sediment, but did not affect water column levels. The presence/absence of protozoa consistently accounted for a greater proportion of the variability in bacterial levels (>95 %) than in bacterial motility (<4 %) in the water column. In sediments, however, motility was more important than predation for both bacteria. Calculations of total CFU/microcosm showed decreasing bacterial concentrations over time under all conditions except for S. enterica in the absence of predation, which increased ~0.5–1.0 log over 5 days. These findings underscore the complexity of predicting the survival of enteric microorganisms in aquatic habitats, which has implications for the accuracy of risk assessment and modeling of water quality.  相似文献   

14.
15.
Predator–prey interactions are central to fitness as animals simultaneously avoid death and consume resources to ensure growth and reproduction. Along with direct effects, predators can also exert strong non-consumptive effects. For example, prey shift habitat use in the presence of predators, a potentially learned behavior. The impact of cognition on movement and predator interactions is largely unexplored despite evidence of learned responses to predation threat. We explore how learning and spatial memory influence predator–prey dynamics by introducing predators into a memory-driven movement modeling framework. To model various aspects of risk, we vary predator behavior: their persistence and spatial correlation with the prey’s resources. Memory outperforms simpler movement processes most in patchy environments with more predictable predators that are more easily avoided once learned. In these cases, memory aids foragers in managing the food–safety trade-off. For example, particular parameterizations of the predation memory reduce encounters while maintaining consumption. We found that non-consumptive effects are highest in landscapes of concentrated, patchy resources. These effects are intensified when predators are highly correlated with the forager’s resources. Smooth landscapes provide more opportunities for foragers to simultaneously consume resources and avoid predators. Predators are able to effectively guard all resources in very patchy landscapes. These non-consumptive effects are also seen with the shift away from the best quality habitat compared to foraging in a predator-free environment.  相似文献   

16.
1.?To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2.?We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3.?The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4.?The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length.  相似文献   

17.
18.
Summary In this study of interactions between larval damselflies (Zygoptera: Coenagrionidae) and pumpkinseed sunfish (Lepomis gibbosus) we focus on the behaviour of the damselfly prey. First we document a prey behaviour in which damselflies use plant stems or leaves to hide from pumpkinseeds. We then test two hypotheses: (1) that damselfly hiding is a specific antipredator behaviour and (2) that hiding occurs more frequently in plant habitats where damselflies experience greater risk of predation. Since plant species growth forms can influence predation risk, our second hypothesis implies that hiding behaviour is conditional upon the type of vegetation providing habitat structure. Conditional expression of antipredator behaviour according to vegetation type may be important in littoral environments, since predator-prey interactions can occur in habitats with a wide range of macrophyte growth forms. The first hypothesis was supported by our findings that damselfly hiding increased in frequency in the presence of pumpkinseeds, that it was related to the frequency of predator approaches, and that its use reduced damselfly predation risk in high risk habitats. The second hypothesis was supported by our results that damselfly hiding rates were greater in the high risk Scirpus habitats than in the lower risk Potamogeton habitats. These results indicate that prey behaviour can influence predator-prey interactions, and that variation in plant growth form can influence prey behaviour, thus contributing to the impact of habitat structure on predator-prey dynamics.  相似文献   

19.
The identification and efficiency of arthropod predator and parasites related to natural control of cotton leafworm eggs,Alabama argillacea (Huebner), were studied in a cotton field, Jaboticabal, SP, Brazil. Plants were marked randomly and the eggs found on them were indicated by arrow tapes for predation and parasitism observations. To evaluate and identify the arthropod fauna in the row-meter containing the marked plant, visual countings and collections using D-Vac ® and “beat sheet” were used. The average predation rate during the season, in the presence of 23.0 predators per row-meter, was 50.6% and the parasitism byTrichogrammatoidea annulata was 44.9% totaling 95.5% of egg reduction. In decreasing order of abundance, the arthropod predators found were the antPheidole sp., the spiderChrysso clementinae Petrunkevitch, the hemipteraOrius insidiosus Say andCeratocapsus mariliensis Carvalho & Fontes, and the coccinellidHyperaspis festiva (Mulsant).  相似文献   

20.
Predators can reduce bee pollination and plant fitness through successful predation and non-consumptive effects. In honey bees, evidence of predation or a direct attack can decrease recruitment dancing and thereby magnify the effects of individual predation attempts at a colony level. However, actual predation attempts and successes are relatively rare. It was not known if a far more common event, just detection of a predator, could inhibit recruitment. We began by testing honey bees'' avoidance of the praying mantis (Tenodera sinensis). Larger predators (later mantis instars, ≥4.5 cm in body length) elicited significantly more avoidance (1.3 fold) than smaller mantis instars. Larger instars also attempted to capture honey bees significantly more often than did smaller instars. Foragers could detect and avoid mantises based upon mantis odor (74% of bees avoided an odor extract) or visual appearance (67% avoided a mantis model). Finally, foragers decreased recruitment dancing by 1.8 fold for a food source with a live adult mantis, even when they were not attacked. This reduction in recruitment dancing, elicited by predator presence alone, expands our understanding of predator non-consumptive effects and of cascading ecosystem effects for plants served by an important generalist pollinator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号