首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

2.
Jayan GC  Casey JL 《Journal of virology》2002,76(23):12399-12404
Hepatitis delta virus (HDV) requires host RNA editing at the viral RNA amber/W site. Of the two host genes responsible for RNA editing via deamination of adenosines in double-stranded RNAs, short inhibitory RNA-mediated knockdown of host ADAR1 expression but not that of ADAR2 led to decreased HDV amber/W editing and virus production. Despite substantial sequence and structural variation among the amber/W sites of the three HDV genotypes, ADAR1a was primarily responsible for editing all three. We conclude that ADAR1 is primarily responsible for editing HDV RNA at the amber/W site during HDV infection.  相似文献   

3.
Jayan GC  Casey JL 《Journal of virology》2005,79(17):11187-11193
RNA editing of the hepatitis delta virus (HDV) antigenome at the amber/W site by the host RNA adenosine deaminase ADAR1 is a critical step in the HDV replication cycle. Editing is required for production of the viral protein hepatitis delta antigen long form (HDAg-L), which is necessary for viral particle production but can inhibit HDV RNA replication. The RNA secondary structural features in ADAR1 substrates are not completely defined, but base pairing in the 20-nucleotide (nt) region 3' of editing sites is thought to be important. The 25-nt region 3' of the HDV amber/W site in HDV genotype I RNA consists of a conserved secondary structure that is mostly base paired but also has asymmetric internal loops and single-base bulges. To understand the effect of this 3' region on the HDV replication cycle, mutations that either increase or decrease base pairing in this region were created and the effects of these changes on amber/W site editing, RNA replication, and virus production were studied. Increased base pairing, particularly in the region 15 to 25 nt 3' of the editing site, significantly increased editing; disruption of base pairing in this region had little effect. Increased editing resulted in a dramatic inhibition of HDV RNA synthesis, mostly due to excess HDAg-L production. Although virus production at early times was unaffected by this reduced RNA replication, at later times it was significantly reduced. Therefore, it appears that the conserved RNA secondary structure around the HDV genotype I amber/W site has been selected not for the highest editing efficiency but for optimal viral replication and secretion.  相似文献   

4.
A host-mediated RNA-editing event allows hepatitis delta virus (HDV) to express two essential proteins, the small delta antigen (HDAg-S) and the large delta antigen (HDAg-L), from a single open reading frame. One or several members of the ADAR (adenosine deaminases that act on RNA) family are thought to convert the adenosine to an inosine (I) within the HDAg-S amber codon in antigenomic RNA. As a consequence of replication, the UIG codon is converted to a UGG (tryptophan [W]) codon in the resulting HDAg-L message. Here, we used a novel reporter system to monitor the editing of the HDV amber/W site in the absence of replication. In cultured cells, we observed that both human ADAR1 (hADAR1) and hADAR2 were capable of editing the amber/W site with comparable efficiencies. We also defined the minimal HDV substrate required for hADAR1- and hADAR2-mediated editing. Only 24 nucleotides from the amber/W site were sufficient to enable efficient editing by hADAR1. Hence, the HDV amber/W site represents the smallest ADAR substrate yet identified. In contrast, the minimal substrate competent for hADAR2-mediated editing contained 66 nucleotides.  相似文献   

5.
RNA editing plays a critical role in the life cycle of hepatitis delta virus (HDV). The host editing enzyme ADAR1 recognizes specific RNA secondary structure features around the amber/W site in the HDV antigenome and deaminates the amber/W adenosine. A previous report suggested that a branched secondary structure is necessary for editing in HDV genotype III. This branched structure, which is distinct from the characteristic unbranched rod structure required for HDV replication, was only partially characterized, and knowledge concerning its formation and stability was limited. Here, we examine the secondary structures, conformational dynamics, and amber/W site editing of HDV genotype III RNA using a miniaturized HDV genotype III RNA in vitro. Computational analysis of this RNA using the MPGAfold algorithm indicated that the RNA has a tendency to form both metastable and stable unbranched secondary structures. Moreover, native polyacrylamide gel electrophoresis demonstrated that this RNA forms both branched and unbranched rod structures when transcribed in vitro. As predicted, the branched structure is a metastable structure that converts readily to the unbranched rod structure. Only branched RNA was edited at the amber/W site by ADAR1 in vitro. The structural heterogeneity of HDV genotype III RNA is significant because not only are both conformations of the RNA functionally important for viral replication, but the ratio of the two forms could modulate editing by determining the amount of substrate RNA available for modification.  相似文献   

6.
Casey JL 《Journal of virology》2002,76(15):7385-7397
RNA editing at the amber/W site plays a central role in the replication scheme of hepatitis delta virus (HDV), allowing the virus to produce two functionally distinct forms of the sole viral protein, hepatitis delta antigen (HDAg), from the same open reading frame. Editing is carried out by a cellular activity known as ADAR (adenosine deaminase), which acts on RNA substrates that are at least partially double stranded. In HDV genotype I, editing requires a highly conserved base-paired structure that occurs within the context of the unbranched rod structure characteristic of HDV RNA. This base-paired structure is disrupted in the unbranched rod of HDV genotype III, which is the most distantly related of the three known HDV genotypes and is associated with the most severe disease. Here I show that RNA editing in HDV genotype III requires a branched double-hairpin structure that deviates substantially from the unbranched rod structure, involving the rearrangement of nearly 80 bp. The structure includes a UNCG RNA tetraloop, a highly stable structural motif frequently involved in the folding of large RNAs such as rRNA. The double-hairpin structure is required for editing, and hence for virion formation, but not for HDV RNA replication, which requires the unbranched rod structure. HDV genotype III thus relies on a dynamic conformational switch between the two different RNA structures: the unbranched rod characteristic of HDV RNA and a branched double-hairpin structure that is required for RNA editing. The different mechanisms of editing in genotypes I and III underscore their functional differences and may be related to pathogenic differences as well.  相似文献   

7.
Cheng Q  Jayan GC  Casey JL 《Journal of virology》2003,77(14):7786-7795
Hepatitis delta virus (HDV) produces two essential forms of the sole viral protein from the same open reading frame by using host RNA editing activity at the amber/W site in the antigenomic RNA. The roles of these two forms, HDAg-S and HDAg-L, are opposed. HDAg-S is required for viral RNA replication, whereas HDAg-L, which is produced as a result of editing, inhibits viral RNA replication and is required for virion packaging. Both the rate and amount of editing are important because excessive editing will inhibit viral RNA replication, whereas insufficient editing will reduce virus secretion. Here we show that for HDV genotype III, which is associated with severe HDV disease, HDAg-L strongly inhibits editing of a nonreplicating genotype III reporter RNA, while HDAg-S inhibits only when expressed at much higher levels. The different inhibitory efficiencies are due to RNA structural elements located ca. 25 bp 3' of the editing site in the double-hairpin RNA structure required for editing at the amber/W site in HDV genotype III RNA. These results are consistent with regulation of amber/W editing in HDV genotype III by a negative-feedback mechanism due to differential interactions between structural elements in the HDV genotype III RNA and the two forms of HDAg.  相似文献   

8.
9.
Characterizations of genetic variations among hepatitis delta virus (HDV) isolates have focused principally on phylogenetic analysis of sequences, which vary by 30 to 40% among three genotypes and about 10 to 15% among isolates of the same genotype. The significance of the sequence differences has been unclear but could be responsible for pathogenic variations associated with the different genotypes. Studies of the mechanisms of HDV replication have been limited to cDNA clones from HDV genotype I, which is the most common. To perform a comparative analysis of HDV RNA replication in genotypes I and III, we have obtained a full-length cDNA clone from an HDV genotype III isolate. In transfected Huh-7 cells, the functional roles of the two forms of the viral protein, hepatitis delta antigen (HDAg), in HDV RNA replication are similar for both genotypes I and III; the short form is required for RNA replication, while the long form inhibits replication. For both genotypes, HDAg was able to support replication of RNAs of the same genotype that were mutated so as to be defective for HDAg production. Surprisingly, however, neither genotype I nor genotype III HDAg was able to support replication of such mutated RNAs of the other genotype. The inability of genotype III HDAg to support replication of genotype I RNA could have been due to a weak interaction between the RNA and HDAg. The clear genotype-specific activity of HDAg in supporting HDV RNA replication confirms the original categorization of HDV sequences in three genotypes and further suggests that these should be referred to as types (i.e., HDV-I and HDV-III) rather than genotypes.  相似文献   

10.
Hepatitis delta virus (HDV) expresses two essential proteins with distinct functions. The small hepatitis delta antigen (HDAg-S) is expressed throughout replication and is needed to promote that process. The large form (HDAg-L) is farnesylated, is expressed only at later times via RNA editing of the amber/W site, and is required for virion assembly. When HDAg-L is artificially expressed at the onset of replication, it strongly inhibits replication. However, there is controversy concerning whether HDAg-L expressed naturally at later times as a consequence of editing and replication can similarly inhibit replication. Here, by stabilizing the predicted secondary structure downstream from the amber/W site, a replication-competent HDV mutant that exhibited levels of editing higher than those of the wild type was created. This mutant expressed elevated levels of HDAg-L early during replication, and at later times, its replication aborted prematurely. No further increase in amber/W editing was observed following the cessation of replication, indicating that editing was coupled to replication. A mutation in HDAg-L and a farnesyl transferase inhibitor were both used to abolish the ability of HDAg-L to inhibit replication. Such treatments rescued the replication defect of the overediting mutant, and even higher levels of amber/W editing resulted. It was concluded that when expressed naturally during replication, HDAg-L is able to inhibit replication and thereby inhibit amber/W editing and its own synthesis. In addition, the structure adjacent to the amber/W site is suboptimal for editing, and this creates a window of time in which replication can occur in the absence of HDAg-L.  相似文献   

11.
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.  相似文献   

12.
Hepatitis delta virus (HDV) contains two RNA species (HDV-S and HDV-L), which encode the small and large forms of hepatitis delta antigens (S- and L-HDAg), respectively. HDV-L RNA is a result of an RNA editing event occurring at an amber/W site of HDV-S RNA. RNA editing must be regulated to prevent premature and excessive accumulation of HDV-L RNA in the viral life cycle. In this study, we used an RNA transfection procedure to study the replication abilities of HDV-L and HDV-S RNA. While HDV-S led to robust RNA replication, HDV-L could not replicate even after 6 days following transfection. The failure of HDV-L to replicate was not due to insufficient amounts of S-HDAg, as identical results were obtained in a cell line that stably overexpresses S-HDAg. Also, it was not due to possible inhibition by L-HDAg, as HDV-S RNA replication was not affected when both HDV-L and HDV-S RNA were cotransfected. Further, when L-HDAg expression from HDV-L RNA was abolished by site-directed mutagenesis, the mutant HDV-L RNA also failed to replicate. Unexpectedly, when the kinetics of RNA replication was examined daily, HDV-L was found to replicate at a low level at the early time points (1 to 2 days posttransfection) but then lose this capability at later time points. Sequence analysis of the replicated HDV-L RNA at day 1 posttransfection showed that it had undergone multiple nucleotide changes, particularly in the region near the putative promoter region of HDV RNA replication. In contrast, very few mutations were found in HDV-S RNA. These results suggest that the editing at the amber/W site triggers a series of additional mutations which rapidly reduce the replication efficiency of the resultant HDV genome and thus help regulate the amount of HDV-L RNA in infected cells. They also explain why L-HDAg is not produced early in HDV infection, despite the fact that HDV-L RNA is present in the virion.  相似文献   

13.
Substrate recognition by ADAR1 and ADAR2.   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

14.
15.
Hepatitis delta virus (HDV) RNA replicates in the nuclei of virus-infected cells. The mechanism of nuclear import of HDV RNA is so far unknown. Using a fluorescein-labeled HDV RNA introduced into partially permeabilized HeLa cells, we found that HDV RNA accumulated only in the cytoplasm. However, in the presence of hepatitis delta antigen (HDAg), which is the only protein encoded by HDV RNA, the HDV RNA was translocated into the nucleus, suggesting that nuclear import of HDV RNA is mediated by HDAg. Deletion of the nuclear localization signal (NLS) or RNA-binding motifs of HDAg resulted in the failure of nuclear import of HDV RNA, indicating that both the NLS and an RNA-binding motif of HDAg are required for the RNA-transporting activity of HDAg. Surprisingly, any one of the three previously identified RNA-binding motifs was sufficient to confer the RNA-transporting activity. We have further shown that HDAg, via its NLS, interacts with karyopherin α2 in vitro, suggesting that nuclear import of the HDAg-HDV RNA complex is mediated by the karyopherin α2β heterodimer. The nuclear import of HDV RNA may be the first biological function of HDAg in the HDV life cycle.  相似文献   

16.
Li YJ  Stallcup MR  Lai MM 《Journal of virology》2004,78(23):13325-13334
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.  相似文献   

17.
Hepatitis delta virus (HDV) RNA forms an unbranched rod structure that is associated with hepatitis delta antigen (HDAg) in cells replicating HDV. Previous in vitro binding experiments using bacterially expressed HDAg showed that the formation of a minimal ribonucleoprotein complex requires an HDV unbranched rod RNA of at least about 300 nucleotides (nt) and suggested that HDAg binds the RNA as a multimer of fixed size. The present study specifically examines the role of HDAg multimerization in the formation of the HDV ribonucleoprotein complex (RNP). Disruption of HDAg multimerization by site-directed mutagenesis was found to profoundly alter the nature of RNP formation. Mutant HDAg proteins defective for multimerization exhibited neither the 300-nt RNA size requirement for binding nor specificity for the unbranched rod structure. The results unambiguously demonstrate that HDAg binds HDV RNA as a multimer and that the HDAg multimer is formed prior to binding the RNA. RNP formation was found to be temperature dependent, which is consistent with conformational changes occurring on binding. Finally, analysis of RNPs constructed with unbranched rod RNAs successively longer than the minimum length indicated that multimeric binding is not limited to the first HDAg bound and that a minimum RNA length of between 604 and 714 nt is required for binding of a second multimer. The results confirm the previous proposal that HDAg binds as a large multimer and demonstrate that the multimer is a critical determinant of the structure of the HDV RNP.Human hepatitis delta virus (HDV) is an unusual subviral agent that increases the severity of acute and chronic liver disease in those infected with its helper, hepatitis B virus (23). The HDV genome is a 1,680-nucleotide (nt) single-stranded circular RNA that is replicated by a double-rolling-circle mechanism (reviewed in references 15 and 28). Both the genome and antigenome RNAs form a characteristic unbranched rod structure due to 70% sequence complementarity between the noncoding and coding regions of the RNA (10, 11, 31). HDV encodes just one protein, hepatitis delta antigen (HDAg), which forms ribonucleoprotein (RNP) complexes with both the genome and the antigenome in cells replicating HDV (3, 5, 30). These complexes play fundamental roles in viral RNA replication and packaging and their characterization is essential for understanding these processes, which are not well characterized.HDAg has been shown to form dimers and higher order multimers, even in the absence of HDV RNA (25, 30, 32). The multimerization activity has been localized to the amino-terminal third of the 195-amino-acid (aa) protein (12, 24, 30, 32). X-ray crystallographic analysis of a peptide comprised of aa 12 to 60 indicated that antiparallel dimers are stabilized by a coiled coil (aa 16 to 48), as well as a hydrophobic core region (aa 50 to 60) that also stabilizes interactions between dimers such that an octameric structure may form (35). Zuccola et al. found that bacterially expressed HDAg could be cross-linked in an octameric structure, and Cornillez-Ty et al. obtained evidence supporting such a structure in cells replicating HDV (7, 35). Site-directed mutations of HDAg amino acids critical for dimerization and/or multimerization abolish the ability of HDAg to support RNA replication (18, 32), indicating that the formation of HDAg multimers is essential for this process.We recently showed that bacterially expressed, C-terminally truncated HDAg forms stable RNP complexes in vitro with segments of HDV RNA that form unbranched rod structures (8). No particular sequences or structures in the RNA, other than the HDV unbranched rod, were essential for complex formation, but, remarkably, binding required that the RNA have a minimum length of at least about 300 nt. Overall, the results were consistent with the formation of a large RNP containing multiple copies of the 19-kDa protein that bound to the RNA either in a highly cooperative manner or as a preformed multimer. On the other hand, based on indirect measures of the RNA-binding activity of site-directed HDAg mutations in cells, others have found that HDAg multimerization might not be required for RNA-binding activity (18).Here, we directly analyze the role of HDAg multimerization in the formation of the HDV RNP complex. We find that HDAg binds to HDV unbranched rod RNA as a preformed multimer. Site-directed mutations that disrupted protein multimerization did not abolish binding but profoundly altered the nature of the RNA-protein complex. In particular, we found that multimerization is associated with RNA-binding specificity, including the RNA length requirement for binding. For the wild-type protein, RNP formation was found to be strongly temperature dependent, suggesting that conformational changes occur on binding, and providing a plausible explanation of the RNA length requirement for binding. Furthermore, we show that the protein binds as multiple multimeric units on longer RNAs, provided the length of the RNA is sufficient. We conclude that the HDAg multimer plays a critical role in the formation of properly structured HDV RNPs.  相似文献   

18.
Hepatitis delta virus mutant: effect on RNA editing.   总被引:6,自引:5,他引:1       下载免费PDF全文
During the replication cycle of hepatitis delta virus (HDV), RNA editing occurs at position 1012 on the 1679-nucleotide RNA genome. This changes an A to G in the amber termination codon, UAG, of the small form of the delta antigen (delta Ag). The resultant UGG codon, tryptophan, allows the translation of a larger form of the delta Ag with a 19-amino-acid C-terminal extension. Using HDV cDNA-transfected cells, we examined the editing potential of HDV RNA mutated from G to A at 1011 on the antigenome, adjacent to normal editing site at 1012. Four procedures were used to study not only the editing of the A at 1012, but also that of the new A at 1011: (i) nucleotide sequencing, (ii) a PCR-based RNA-editing assay, (iii) immunoblot assays, and (iv) immunofluorescence. Five findings are reported. (i) Even after the mutation at 1011, editing still occurred at 1012. (ii) Site 1011 itself now acted as a novel RNA-editing site. (iii) Sites 1011 and 1012 were edited independently. (iv) At later times, both sites became edited, thereby allowing the synthesis of the large form of the delta Ag (delta Ag-L). (v) Via immunofluorescence, such double editing became apparent as a stochastic event, in that groups of cells arose in which the changes had taken place. Evaluation of these findings and of those from previous studies of the stability of the HDV genomic sequence (H.J. Netter et al., J. Virol. 69:1687-1692, 1995) supports both the recent reevaluation of HDV RNA editing as occurring on antigenomic RNA (Casey and Gerin, personal communication) and the interpretation that editing occurs via the RNA-modifying enzyme known as DRADA.  相似文献   

19.
ADAR enzymes, adenosine deaminases that act on RNA, form a family of RNA editing enzymes that convert adenosine to inosine within RNA that is completely or largely double-stranded. Site-selective A→I editing has been detected at specific sites within a few structured pre-mRNAs of metazoans. We have analyzed the editing selectivity of ADAR enzymes and have chosen to study the naturally edited R/G site in the pre-mRNA of the glutamate receptor subunit B (GluR-B). A comparison of editing by ADAR1 and ADAR2 revealed differences in the specificity of editing. Our results show that ADAR2 selectively edits the R/G site, while ADAR1 edits more promiscuously at several other adenosines in the double-stranded stem. To further understand the mechanism of selective ADAR2 editing we have investigated the importance of internal loops in the RNA substrate. We have found that the immediate structure surrounding the editing site is important. A purine opposite to the editing site has a negative effect on both selectivity and efficiency of editing. More distant internal loops in the substrate were found to have minor effects on site selectivity, while efficiency of editing was found to be influenced. Finally, changes in the RNA structure that affected editing did not alter the binding abilities of ADAR2. Overall these findings suggest that binding and catalysis are independent events.  相似文献   

20.
A woodchuck-derived hepatitis delta virus (HDV) inoculum was created by transfection of a genotype I HDV cDNA clone directly into the liver of a woodchuck that was chronically infected with woodchuck hepatitis virus. All woodchucks receiving this inoculum became positive for HDV RNA in serum, and 67% became chronically infected, similar to the rate of chronic HDV infection in humans. Analysis of HDV sequences obtained at 73 weeks postinfection indicated that changes had occurred at a rate of 0.5% per year; many of these modifications were consistent with editing by host RNA adenosine deaminase. The appearance of sequence changes, which were not evenly distributed on the genome, was correlated with the course of HDV infection. A limited number of modifications occurred in the consensus sequence of the viral genome that altered the sequence of the hepatitis delta antigen (HDAg). All chronically infected animals examined exhibited these changes 73 weeks following infection, but at earlier times, only one of the HDV carriers exhibited consensus sequence substitutions. On the other hand, sequence modifications in animals that eventually recovered from HDV infection were apparent after 27 weeks. The data are consistent with a model in which HDV sequence changes are selected by host immune responses. Chronic HDV infection in woodchucks may result from a delayed and weak immune response that is limited to a small number of epitopes on HDAg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号