首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
This study examined whether focal adhesion kinase (FAK) plays a role in the differentiation of C(2)C(12) myoblasts into myotubes. Differentiation of C(2)C(12) myoblasts induced by switch to differentiation culture medium was accompanied by a transient reduction of FAK phosphorylation at Tyr-397 (to approximately 50%, at 1 and 2 h), followed by an increase thereafter (to 240% up to 5 days), although FAK protein expression remained unchanged. FAK and phosphorylated FAK were found at the edge of lamellipodia in proliferating cells, whereas the later increase in FAK phosphorylation in differentiating cells was accompanied by its preferential location at the tip of well-organized actin stress fibers. Hyperexpression of FAK autophosphorylation site (Tyr-397) mutant (MT-FAK) reduced FAK phosphorylation at Tyr-397 in proliferating cells and was accompanied by reduction of cyclin D1 and increase of myogenin expression. These cells failed to progress to myotubes in differentiation medium. In contrast, hyperexpression of a wild-type FAK construction (WT-FAK) increased baseline and abolished the transient reduction of FAK phosphorylation at Tyr-397 in serum-starved C(2)C(12) cells. Cells transfected with WT-FAK failed to reduce cyclin D1 and to increase myogenin expression, as well as to progress to terminal differentiation in differentiation medium. These data indicate that FAK signaling plays a critical role in the control of cell cycle as well as in the progression of C(2)C(12) cells to terminal differentiation. Transient inhibition of FAK phosphorylation at Tyr-397 contributes to trigger the myogenic genetic program, but its later activation is also central to terminal differentiation into myotubes.  相似文献   

2.
Previous reports suggest that PKC plays an important role in regulating myogenesis. However, the regulatory signaling pathways are not fully understood. We examined the effects of PKC downregulation on signaling events during skeletal muscle differentiation. We found that downregulation of PKC results in increased myogenesis in C2C12 cells as measured by creatine kinase activity and myogenin expression. We showed that, during differentiation, downregulation of PKC expression results in increased tyrosine phosphorylation of FAK, Cas, and paxillin, concomitant with enhanced Cas-CrkII complex formation, which leads to activation of JNK2. But in proliferated muscle cells, PKC inhibition results in FAK and Cas tyrosine dephosphorylation. Further, disruption of actin cytoskeleton by cytochalasin D prevents the activation of FAK and Cas as well as the formation of Cas-CrkII complex stimulated by PKC downregulation during muscle cell differentiation. Finally, we observed that PKC downregulation increases the tyrosine phosphorylation of focal adhesion associated proteins. Based on the above data, we propose that PKC downregulation results in enhanced tyrosine phosphorylation of FAK, Cas, and paxillin, thus promoting the establishment of Cas-CrkII complex, leading to activation of JNK and that these interactions are dependent upon the integrity of actin cytoskeleton during muscle cell differentiation. Data presented here significantly contribute to elucidating the regulatory role of PKC in myogenesis possibly through integrin signaling pathway.  相似文献   

3.
4.
Focal adhesion kinase (FAK) controls adhesion‐dependent cell motility, survival, and proliferation. FAK has kinase‐dependent and kinase‐independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x‐ray crystallography, small angle x‐ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase‐dependent functions—autophosphorylation of tyrosine‐397—requires site‐specific dimerization of FAK. The dimers form via the association of the N‐terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C‐terminal FAT domain. FAT binds to a basic motif on FERM that regulates co‐activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site‐specific function. The dimer interfaces we describe are promising targets for blocking FAK activation.  相似文献   

5.
Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.  相似文献   

6.
7.
Goel HL  Dey CS 《Cell proliferation》2002,35(3):131-142
Focal adhesion kinase (FAK) was heavily phosphorylated as a function of differentiation of C2C12 mouse skeletal muscle cells. Insulin caused increases in FAK phosphorylation before stabilization in proliferated cells, while in differentiated cells there was a consistent transient inhibition of FAK phosphorylation before stimulation. The expression level of FAK was unaltered. Specific inhibition of insulin receptor tyrosine kinase activity abolished the insulin-mediated dephosphorylation of FAK. The data strongly indicate that FAK tyrosine phosphorylation, necessary for skeletal muscle differentiation, is modulated by insulin. Thus, for the first time, we report the differential regulation of FAK tyrosine phosphorylation by insulin during skeletal muscle differentiation.  相似文献   

8.
Actin dynamics are implicated in various cellular processes, not only through the regulation of cytoskeletal organization, but also via the control of gene expression. In the present study we show that the Src family kinase substrate p130Cas (Cas is Crk-associated substrate) influences actin remodelling and concomitant muscle-specific gene expression, thereby regulating myogenic differentiation. In C2C12 myoblasts, silencing of p130Cas expression by RNA interference impaired F-actin (filamentous actin) formation and nuclear localization of the SRF (serum-response factor) co-activator MAL (megakaryocytic acute leukaemia) following the induction of myogenic differentiation. Consequently, formation of multinucleated myotubes was abolished. Re-introduction of wild-type p130Cas, but not its phosphorylation-defective mutant, into p130Cas-knockdown myoblasts restored F-actin assembly, MAL nuclear localization and myotube formation. Depletion of the adhesion molecule integrin β3, a key regulator of myogenic differentiation as well as actin cytoskeletal organization, attenuated p130Cas phosphorylation and MAL nuclear localization during C2C12 differentiation. Moreover, knockdown of p130Cas led to the activation of the F-actin-severing protein cofilin. The introduction of a dominant-negative mutant of cofilin into p130Cas-knockdown myoblasts restored muscle-specific gene expression and myotube formation. The results of the present study suggest that p130Cas phosphorylation, mediated by integrin β3, facilitates cofilin inactivation and promotes myogenic differentiation through modulating actin cytoskeleton remodelling.  相似文献   

9.
Background information. FAK (focal adhesion kinase), an essential non‐receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signalling and mechanotransduction. FAK‐dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contribution of FAK to the generation of adhesive forces is not well understood. Results. Using FAK‐null cells expressing wild‐type and mutant FAK under an inducible tetracycline promoter, we analysed the role of FAK in the generation of steady‐state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady‐state strength by 30% compared with FAK‐null cells. FAK expression reduced VCL (vinculin) localization to focal adhesions by 35% independently of changes in integrin binding and localization of talin and paxillin. RNAi (RNA interference) knock‐down of VCL abrogated the FAK‐dependent differences in adhesive forces. FAK‐dependent changes in VCL localization and adhesive forces were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Tyr‐397 and kinase domain Tyr‐576/Tyr‐577 sites were differentially required for FAK‐mediated adhesive responses. Conclusions. We demonstrate that FAK reduces steady‐state adhesion strength by modulating VCL recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix.  相似文献   

10.
The initial phase of muscle differentiation depends on the activities of protein kinases including phosphatidylinositol-3 kinase (PI-3K), the extracellular signal-regulated kinases ERK1/2 (p42 and p44), and p38 kinase. Myogenesis is also characterized by an apoptosis-resistant phenotype of myotubes. The effects of inhibitors of the above-mentioned protein kinases on myogenesis from C2C12 mouse myoblasts and on muscle cell apoptosis were examined individually over 5 successive days. The negative effects of PD98059 (5, 25, 50 microM), LY294002 (1, 5, 10 microM) and SB203580 (1, 5, 10 microM) on cell viability were evident at the initial stage of myogenesis (up to the 3rd day). On the 3rd day, nuclear expression of myogenin was suppressed dose-dependently by SB203580. In contrast, decreased cytoplasmic levels but elevated nuclear expressions of myogenin were observed in myotubes treated with PD98059 or LY294002. SB203580 treatment confirmed that p38 kinase is involved in the onset of myogenesis. The cytoplasmic and nuclear expression of NF-kappaB was elevated after treatment with the above-mentioned protein kinase inhibitors. Likewise, Bcl-2 expression in the cytosol increased. These studies might shed more light on the role of selected kinases and some survival systems in myogenesis impaired by neuromuscular disorders as well as safety of the treatment of the proliferative diseases with the kinase inhibitors.  相似文献   

11.
A well-characterised experimental system, the myogenin gene in C2C12 muscle cell culture, was chosen to better understand the methylation mechanism underlying the regulation of gene expression. We already demonstrated that demethylation dynamics of a specific CpG site in the 5'-flanking region of myogenin well correlates with gene expression and terminal differentiation. Here we demonstrate that S-adenosylmethionine-sulphate-p-toluenesulphonate (SAM) inhibits myogenin expression and myoblast differentiation by delaying the demethylation of specific CpG in differentiating myoblasts. These results suggest new perspectives in methylation mechanisms and the use of SAM in the partial silencing of gene expression, as it could be required in disease treatment.  相似文献   

12.
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.  相似文献   

13.
14.
Emerin expression at the early stages of myogenic differentiation   总被引:3,自引:0,他引:3  
Emerin is an ubiquitous protein localized at the nuclear membrane of most cell types including muscle cells. The protein is absent in most patients affected by the X-linked form of Emery-Dreifuss muscular dystrophy, a disease characterized by slowly progressive muscle wasting and weakness, early contractures of the elbows, Achilles tendons, and post-cervical muscles, and cardiomyopathy. Besides the nuclear localization, emerin cytoplasmic distribution has been suggested in several cell types. We studied the expression and the subcellular distribution of emerin in mouse cultured C2C12 myoblasts and in primary cultures of human myoblasts induced to differentiate or spontaneously differentiating in the culture medium. In differentiating myoblasts transiently transfected with a cDNA encoding the complete emerin sequence, the protein localized at the nuclear rim of all transfected cells and also in the cytoplasm of some myoblasts and myotubes. Cytoplasmic emerin was also observed in detergent-treated myotubes, as determined by electron microscopy observation. Both immunofluorescence and biochemical analysis showed, that upon differentiation of C2C12 cells, emerin expression was decreased in the resting myoblasts but the protein was highly represented in the developing myotubes at the early stage of cell fusion. Labeling with specific markers of myogenesis such as troponin-T and myogenin permitted the correlation of increased emerin expression with the onset of muscle differentiation. These data suggest a role for emerin during proliferation of activated satellite cells and at the early stages of differentiation.  相似文献   

15.
16.
Myogenic differentiation is a highly orchestrated, multistep process that is coordinately regulated by growth factors and cell adhesion. We show here that integrin-linked kinase (ILK), an intracellular integrin- and PINCH-binding serine/threonine protein kinase, is an important regulator of myogenic differentiation. ILK is abundantly expressed in C2C12 myoblasts, both before and after induction of terminal myogenic differentiation. However, a noticeable amount of ILK in the Triton X-100-soluble cellular fractions is significantly reduced during terminal myogenic differentiation, suggesting that ILK is involved in cellular control of myogenic differentiation. To further investigate this, we have overexpressed the wild-type and mutant forms of ILK in C2C12 myoblasts. Overexpression of ILK in the myoblasts inhibited the expression of myogenic proteins (myogenin, MyoD, and myosin heavy chain) and the subsequent formation of multinucleated myotubes. Furthermore, mutations that eliminate either the PINCH-binding or the kinase activity of ILK abolished its ability to inhibit myogenic protein expression and allowed myotube formation. Although overexpression of the ILK mutants is permissive for the initiation of terminal myogenic differentiation, the myotubes derived from myoblasts overexpressing the ILK mutants frequently exhibited an abnormal morphology (giant myotubes containing clustered nuclei), suggesting that ILK functions not only in the initial decision making process, but also in later stages (fusion or maintaining myotube integrity) of myogenic differentiation. Additionally, we show that overexpression of ILK, but not that of the PINCH-binding defective or the kinase-deficient ILK mutants, prevents inactivation of MAP kinase, which is obligatory for the initiation of myogenic differentiation. Finally, inhibition of MAP kinase activation reversed the ILK-induced suppression of myogenic protein expression. Thus, ILK likely influences the initial decision making process of myogenic differentiation by regulation of MAP kinase activation.  相似文献   

17.
Insulin plays an important role in muscle cell survival and proliferation. However, there is no report showing the role of insulin in spreading of muscle cells. In the present report, we showed that insulin enhances muscle cell spreading concomitant with enhanced tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. Moreover, insulin can stimulate the cell spreading even in presence of integrin alpha5 blockers although to a lesser extent as compared to control. Cell adhesion was not dependent on insulin and serum, and decreased in presence of integrin blockers. We found direct association of FAK with affinity purified insulin receptors using in vitro kinase assay. The increase in FAK tyrosine phosphorylation was associated with increase in its kinase activity and further supported by increased phosphotyrosine accumulation on focal adhesions and increased membrane localization of FAK after stimulation by insulin. Moreover, insulin-mediated muscle cell spreading was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase) activity. PI 3-kinase activity was found to be associated with FAK and the FAK associated PI 3-kinase activity enhanced when cells were plated in presence of insulin. We also observed activation of MAP kinases, i.e., ERK-1/-2 during insulin mediated muscle cell spreading. In conclusion, FAK, PI 3-kinase, and MAP kinase are important components of pathway(s) that regulate insulin stimulated muscle cell spreading.  相似文献   

18.
During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogenesis, followed by the appearance of mononucleated cells expressing both myogenin and the cell cycle inhibitor p21. Although expression of both proteins was sustained in mitogen-restimulated myocytes, 5- bromodeoxyuridine incorporation experiments in serum-starved cultures revealed that myogenin-positive cells remained capable of replicating DNA. In contrast, subsequent expression of p21 in differentiating myoblasts correlated with the establishment of the postmitotic state. Later during myogenesis, postmitotic (p21-positive) mononucleated myoblasts activated the expression of the muscle structural protein myosin heavy chain, and then fused to form multinucleated myotubes. Thus, despite the asynchrony in the commitment to differentiation, skeletal myogenesis is a highly ordered process of temporally separable events that begins with myogenin expression, followed by p21 induction and cell cycle arrest, then phenotypic differentiation, and finally, cell fusion.  相似文献   

19.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

20.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with down-regulation of fibronectin (FN) and laminin (LN), two extracellular matrix components interacting with cell surface integrin receptors. We now investigated whether Caco-2 cell differentiation was associated with alterations in integrin signaling with special interest in the expression and activity of focal adhesion kinase (FAK) and mitogen-activated protein (MAP) kinase. The differentiation of Caco-2 cells was associated with: 1) down-regulation of beta1 integrin expression at the mRNA and protein levels; 2) increased FAK expression together with decreased FAK autophosphorylation; 3) decreased FAK's ability to associate with PI3-kinase and pp60c-src; and 4) increased MAP kinase expression along with decreased MAP activity. In addition, we show that FAK and MAP kinase belong to distinct integrin signaling pathways and that both pathways remain functional during Caco-2 cell differentiation since the coating of differentiating cells on FN and LN but not on polylysine increased the tyrosine phosphorylation of FAK and of its endogenous substrate paxillin, and stimulated MAP kinase activity. In conclusion, our results provide evidence that FAK and MAP kinase, two signaling molecules activated independently by beta1 integrins in Caco-2 cells, undergo alterations of both expression and activity during the enterocytic differentiation of this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号