首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used two different methods to study the expression pattern of alkaline phosphatase (alp) in Dictyostelium. In situ staining of the endogenous enzyme activity at different stages of development showed that the enzyme was active early in the aggregation stage and localized to the area where the tip of the first finger was initiated. The activity was localized to the anterior region of developing slugs, then became restricted to the region between the prestalk and prespore cells at the culmination stage. In the complete fruiting body, the activity was confined to the lower and upper cup. A second method to study alp expression utilized a beta-galactosidase reporter gene under the control of the alp promoter. A low level of beta-galactosidase activity was observed in vegetative cells, then increased during development. Reporter gene activity was restricted to PstO cells at the slug stage. At the culmination stage, the expression was restricted to prestalk cells at the interface between the prestalk and prespore cells. In the completed fruiting body, the expression was observed in the upper and lower cup.  相似文献   

2.
SmdA is a Dictyostelium orthologue of the SET/MYND chromatin re-modelling proteins. In developing structures derived from a null mutant for smdA (a smdA- strain), prestalk patterning is normal, but using a prespore lacZ reporter fusion, there is ectopic accumulation of beta-galactosidase in the prestalk region. As wild type slugs migrate, there is continual forward movement and re-differentiation of prespore cells into prestalk cells. Thus, a potential explanation for the ectopic reporter localization in smdA null prestalk cells is an increased rate of re-differentiation and anterior movement of prespore cells. In support of this notion, analysis of an unstable lacZ reporter, driven by the prespore promoter, reveals a normal staining pattern in the smdA- strain. We suggest that one or more genes regulated by SmdA acts to repress prespore re-specification.  相似文献   

3.
4.
The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region.  相似文献   

5.
In Dictyostelium discoideum, several G proteins are known to mediate the transduction of signals that direct chemotactic movement and regulate developmental morphogenesis. The G protein alpha subunit encoded by the Galpha4 gene has been previously shown to be required for chemotactic responses to folic acid, proper developmental morphogenesis, and spore production. In this study, cells overexpressing the wild type Galpha4 gene, due to high copy gene dosage (Galpha4HC), were found to be defective in the ability to form the anterior prestalk cell region, express prespore- and prestalk-cell specific genes, and undergo spore formation. In chimeric organisms, Galpha4HC prespore cell-specific gene expression and spore production were rescued by the presence of wild-type cells, indicating that prespore cell development in Galpha4HC cells is limited by the absence of an intercellular signal. Transplanted wild-type tips were sufficient to rescue Galpha4HC prespore cell development, suggesting that the rescuing signal originates from the anterior prestalk cells. However, the deficiencies in prestalk-specific gene expression were not rescued in the chimeric organisms. Furthermore, Galpha4HC cells were localized to the prespore region of these chimeric organisms and completely excluded from the anterior prestalk region, suggesting that the Galpha4 subunit functions cell-autonomously to prevent anterior prestalk cell development. The presence of exogenous folic acid during vegetative growth and development delayed anterior prestalk cell development in wild-type but not galpha4 null mutant aggregates, indicating that folic acid can inhibit cell-type-specific differentiation by stimulation of the Galpha4-mediated signal transduction pathway. The results of this study suggest that Galpha4-mediated signals can regulate cell-type-specific differentiation by promoting prespore cell development and inhibiting anterior prestalk-cell development.  相似文献   

6.
Abstract. We show that the anterior, prestalk region of the Dictyostelium slug contains cells which express, or have expressed, a prespore-specific marker. We term these cells "prespore-like cells" (PLC). In newly formed slugs there is a sharp prespore/prestalk boundary, with very few PLC, but after several days of migration the clear demarcation between prespore and prestalk zones breaks down because the number of PLC increases dramatically. This is consistent with previous observations showing there to be rapid interchange of cells between the prestalk and prespore regions. This is not, however, their only source, as a scattering of PLC appear when separate prestalk and prespore regions first become apparent at the time of tip formation. Also, at culmination, there is respecification of "prespore" cells at the pre-stalk/prespore boundary to form part of the mature stalk. The existence of these cells, and of PLC, may explain why we find prespore-specific mRNAs in mature stalk cells.  相似文献   

7.
Encystation and sporulation are crucial developmental transitions for solitary and social amoebae, respectively. Whereas little is known of encystation, sporulation requires both extra- and intracellular cAMP. After aggregation of social amoebae, extracellular cAMP binding to surface receptors and intracellular cAMP binding to cAMP-dependent protein kinase (PKA) act together to induce prespore differentiation. Later, a second episode of PKA activation triggers spore maturation. Adenylyl cyclase B (ACB) produces cAMP for maturation, but the cAMP source for prespore induction is unknown. We show that adenylyl cyclase G (ACG) protein is upregulated in prespore tissue after aggregation. acg null mutants show reduced prespore differentiation, which becomes very severe when ACB is also deleted. ACB is normally expressed in prestalk cells, but is upregulated in the prespore region of acg null structures. These data show that ACG induces prespore differentiation in wild-type cells, with ACB capable of partially taking over this function in its absence.  相似文献   

8.
Nature and distribution of the morphogen DIF in the Dictyostelium slug   总被引:11,自引:0,他引:11  
The Dictyostelium slug contains a simple anterior-posterior pattern of prestalk and prespore cells. It is likely that DIF, the morphogen which induces stalk cells, is involved in establishing this pattern. Previous work has shown that a number of distinct species of DIF are released by developing cells and that cell-associated DIF activity increases rapidly during the slug stage of development. In this paper we describe a comparison of the DIF extracted from slugs with the DIF released into the medium. Analysis by high-pressure liquid chromatography (HPLC) using different solvent systems shows that the major species of DIF activity extracted from slugs coelutes with DIF-1, the major species of released DIF and is similarly sensitive to sodium borohydride reduction. Since DIF specifically induces the differentiation of prestalk cells, the anterior cells of the slug, it could be anticipated that DIF is localized in the prestalk region. We have therefore determined the distribution of DIF within the slug. Migrating slugs from strain V12M2 were manually dissected into anterior one-third and posterior two-third fragments and the DIF activity extracted. Surprisingly, we found that DIF was not restricted to the prestalk fragment. Instead there appears to be a reverse gradient of DIF in the slug with at least twice the specific activity of total DIF in the prespore region than in the prestalk region.  相似文献   

9.
The acyl coenzyme A (CoA) binding protein AcbA is cleaved to form a peptide (SDF-2) that coordinates spore encapsulation during the morphogenesis of Dictyostelium discoideum fruiting bodies. We present genetic evidence that the misspecification of cell types seen in mutants of the serine protease/ABC transporter TagA results from the loss of normal interactions with AcbA. Developmental phenotypes resulting from aberrant expression of the TagA protease domain, such as the formation of supernumerary tips on aggregates and the production of excess prestalk cells, are suppressed by null mutations in the acbA gene. Phenotypes resulting from the deletion of tagA, such as overexpression of the prestalk gene ecmB and the misexpression of the prespore gene cotB in stalk cells, are also observed in acbA mutants. Moreover, tagA- mutants fail to produce SDF-2 during fruiting body morphogenesis but are able to do so if they are stimulated with exogenous SDF-2. These results indicate that the developmental program depends on TagA and AcbA working in concert with each other during cell type differentiation and suggest that TagA is required for normal SDF-2 signaling during spore encapsulation.  相似文献   

10.
The stalk cell differentiation inducing factor (DIF) has the properties required of a morphogen responsible for pattern regulation during the pseudoplasmodial stage of Dictyostelium development. It induces prestalk cell formation and inhibits prespore cell formation, but there is as yet no strong evidence for a morphogenetic gradient of DIF. We have measured DIF accumulation by monolayers of isolated prestalk and prespore cells in an attempt to provide evidence for such a gradient. DIF is accumulated in the largest quantities by a subpopulation of prestalk cells that specifically express the DIF-inducible genes pDd56 and pDd26. Since it has been shown recently that cells that express pDd56 are localized in the central core of the prestalk cell region of the pseudoplasmodia, our current results suggest a morphogenetic gradient generated by this region.  相似文献   

11.
12.
Abstract. Conversion of prestalk cells to prespore cells was investigated in normally proportioned as well as prestalk-enriched cell populations under two different conditions: in slugs migrating on agar plates and in suspension cultures of dissociated slug cells in the presence of cAMP. In most experiments, prestalk cells labelled with a fluorescent dye (TRITC) and unlabelled prespore cells were combined together by grafting (for migrating slugs) or by mixing (for suspension cultures) to distinguish conversion of prestalk cells to prespore cells. In both migrating and dissociated slugs, minimal conversion of prestalk to prespore cells was observed when the proportion of prespore cells in the whole population was maintained at a normal level. When the prespore proportion in the initial population was lowered, a considerable fraction of prestalk cells underwent cell-type conversion to become prespore cells or spores. These results indicate that the presence of prespore cells somehow prevents prestalk cells from becoming prespore.  相似文献   

13.
Abstract. We propose that the prestalk/prespore pattern in Dictyostelium is generated in two steps: In a first process, an intermingled, non-position dependent prestalk/prespore pattern is generated by a cell-restricted autocatalysis and the antagonistic action of a long-ranging substrate which becomes depleted during this autocatalysis. By computer simulations we show that the assumed interaction accounts for several experimentally observed features of the prestalk/ prespore pattern: The size-independent ratio of both cell types, the pattern regulation after removal of one cell type, the development towards one or the other pathway before the slug obtains its final shape or even before aggregation is completed. Our hypothetical substrate may be identical with an experimentally found differentiation-inducing factor (DIF). Alternative molecular realizations of the basic mechanism are discussed. A second process leads to the aggregation of the prestalk cells in a particular region of the aggregate, the future tip region. Interactions which en-able tip formation and the coupling between the prestalk/prespore and the tip-forming system are discussed. Our model shows that the formation of a single large patch of differentiated cells and its size regulation requires conflicting parameters. By a separation into a mechanism which determines the position and a second one which determines the size of a structure, each mechanism can be optimized individually without requiring compromises for the other. Such a separation also seems to occur in other developmental systems.  相似文献   

14.
It has been shown that, in Dictyostelium discoideum, conversion of prestalk cells to prespore cells in suspension cultures is inhibited by coexisting prespore cells. To examine whether the inhibition of conversion requires direct cell contact or is mediated by substances secreted by the cells, prestalk cells and prespore cells were incubated in shaken suspension, separated from each other by a dialysis membrane, and conversion of the prestalk cells to prespore cells scored after 24 h. Prestalk-to-prespore conversion was significantly inhibited if the density of the prespore cells was sufficiently high. In contrast, prestalk cells had little influence on prestalk-to-prespore conversion. Media conditioned by prespore cells, but not by prestalk cells, also inhibited the conversion of prestalk cells. Adenosine, propionate, diethylstilboestrol and differentiation inducing factor (DIF), all of which are known to influence the prestalk/prespore differentiation, were examined for their effects on prestalk-to-prespore conversion. Among these, all except adenosine significantly inhibited the conversion. Based on these results, possible mechanisms for maintenance of the constant cell-type ratio in D. discoideum slugs were discussed.  相似文献   

15.
The proportions of prespore and prestalk cells in Dictyostelium discoideum are regulated so that they are size invariant and can adjust when the ratio is perturbed. We have found that disruption of the gene amdA that encodes AMP deaminase results in a significantly increased proportion of prestalk cells. Strains lacking AMP deaminase form short, thick stalks and glassy sori with less than 5% the normal number of spores. The levels of prestalk-specific mRNAs in amdA(-) cells are more than twice as high as those in wild-type strains and prespore-specific mRNAs are reduced. Using an ecmA::lacZ construct to mark prestalk cells, we found that amdA(-) null slugs have twice the normal number of prestalk cells. The number of cells expressing an ecmO::lacZ construct was not affected by loss of AmdA, indicating that the mutation results in an increase in PST-A prestalk cells rather than PST-O cells. This alteration in cell-type proportioning is a cell-autonomous consequence of the loss of AMP deaminase since mutant cells developed together with wild-type cells still produced excess prestalk cells and wild-type cells carrying the ecmA::lacZ construct formed normal numbers of prestalk cells when developed together with an equal number of amdA(-) mutant cells.  相似文献   

16.
P Schaap  M Wang 《Cell》1986,45(1):137-144
We present evidence for the hypothesis that in multicellular structures of Dictyostelium, production of adenosine by hydrolysis of cAMP near the tip region prevents both generation of competing tips and differentiation of prespore cells near the tip, and thus establishes a "prestalk" region. We demonstrate that adenosine affects the immunological prespore specific staining pattern in slugs in a manner opposite to cAMP:cAMP induces an increase of prespore antigen; adenosine induces a decrease. When endogenous adenosine is removed from slugs, prespore vacuoles are synthesized throughout the prestalk region. Adenosine was found to inhibit the induction of prespore differentiation by cAMP in an apparently competitive manner. It was also found that adenosine specifically increased the amount of tissue controlled by one tip, probably by inhibiting generation of competing oscillators. Removing endogenous adenosine from slugs resulted in a decrease of tip dominance.  相似文献   

17.
Ennis HL  Dao DN  Wu MY  Kessin RH 《Protist》2003,154(3-4):419-429
Cell-fate decisions and spatial patterning in Dictyostelium are regulated by a number of genes. Our studies have implicated a gene called fbxA, which codes for an F-box protein, in these pathways. The FbxA protein is one of the controls on a cAMP phosphodiesterase called RegA, mediating its degradation via ubiquitin-linked proteolysis. Using marked strains, we showed that the fbxA mutant has defective cell-type proportioning, with a dearth of prestalk cells compared to prespore cells. In this work, we show that this effect occurs earlier during the 24 hour developmental cycle than previously thought. The normal sorting of the prestalk and prespore cells in aggregates and mounds is not affected by the mutation. The mutant cells sort abnormally at the tipped mound stage, when prespore and prestalk cells normally distribute into their proper compartments. The fbxA mutant forms prestalk cells in low numbers when not in chimeras, but in the presence of wild-type amoebae the mutant preferentially forms viable spores, driving the wild type to form non-viable stalk cells. In an attempt to identify the signal transduction pathway that mediates proportionality in prestalk and prespore cells, we asked whether certain signal transduction mutants were immune to the effects of the fbxAcells and formed spores in chimeras.  相似文献   

18.
At least three distinct types of cell arise from a population of similar amoebae during Dictyostelium development: prespore, prestalk A and prestalk B cells. We report evidence suggesting that this cellular diversification can be brought about by the combinatorial action of two diffusible signals, cAMP and DIF-1. Cells at different stages of normal development were transferred to shaken suspension, challenged with various combinations of signal molecules and the expression of cell-type-specific mRNA markers measured 1-2 h later. pDd63, pDd56 and D19 mRNAs were used for prestalk A, prestalk B and prespore cells respectively. We find the following results. (1) Cells first become responsive to DIF-1 for prestalk A differentiation and to cAMP for prespore differentiation at the end of aggregation, about 2 h before these cell types normally appear. (2) At the first finger stage of development, when the rate of accumulation of the markers is maximal, the expression of each is favoured by a unique combination of effectors: prespore differentiation is stimulated by cAMP and inhibited by DIF-1; prestalk A differentiation is stimulated by both cAMP and DIF-1 and prestalk B differentiation is stimulated by DIF-1 and inhibited by cAMP. (3) Half-maximal effects are produced by 10-70 nM DIF-1, which is in the physiological range. (4) Ammonia and adenosine, which can affect cell differentiation in other circumstances, have no significant pathway-specific effect in our conditions. These results suggest that cell differentiation could be brought about in normal development by the localized action of cAMP and DIF-1.  相似文献   

19.
During migration of a D. mucoroides slug, prespore cells at the immediate edge of the prespore-prestalk junction advance into the prestalk region in approximately 1.5 min. Redifferentiation of the prespore into prestalk cells occurs during this period. Evidence that the cells redifferentiated required autoradiographic, electron microscopic, and staining techniques. These methods determined that glycoprotein synthesis declined; prespore vesicles, the organelles found specifically in prespore cells, were degraded; and staining was reduced during this developmental transition into prestalk cells.  相似文献   

20.
张敏  谭宁  侯连生 《动物学报》2007,53(2):278-284
利用电镜酶细胞化学方法,观察盘基网柄菌细胞分化和凋亡过程中酸性磷酸酶的变化。在细胞丘阶段,酶反应颗粒出现在线粒体内自噬空泡内,随着内自噬空泡的逐渐增大,线粒体内的酶反应颗粒逐渐增多,线粒体内嵴结构不断破坏,直至遍布整个空泡化的线粒体内;当细胞发育至前孢子细胞时,由于嵴结构被完全破坏,酶反应颗粒主要集中在前孢子细胞空泡的单层膜上,空泡化的线粒体内酶反应颗粒逐渐消失。在凋亡的柄细胞中,自噬泡内酶反应强烈,凋亡中期的前柄细胞的细胞核中出现酶反应颗粒,均匀分布在细胞核中,直至细胞核与自噬泡融合。在孢子细胞外被与质膜间也观察到非溶酶体酸性磷酸酶。所得结果证实:线粒体内自噬小泡具有消化功能;自噬泡内酶活性与细胞器消亡有关;细胞核中的酸性磷酸酶可能作为一种非溶酶体酸性磷酸酶参与细胞核中核蛋白的脱磷酸化过程,与发育相关基因表达有关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号