首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5T253 and hMSC-LRP5T244 cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling, respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling, but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion, canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate.  相似文献   

3.
Heparan sulfate proteoglycans regulate various physiological and developmental processes through interactions with a number of protein ligands. Heparan sulfate (HS)-ligand binding depends on the amount and patterns of sulfate groups on HS, which are controlled by various HS sulfotransferases in the Golgi apparatus as well as extracellular 6-O-endosulfatases called “Sulfs.” Sulfs are a family of secreted molecules that specifically remove 6-O-sulfate groups within the highly sulfated regions on HS. Vertebrate Sulfs promote Wnt signaling, whereas the only Drosophila homologue of Sulfs, Sulf1, negatively regulates Wingless (Wg) signaling. To understand the molecular mechanism for the negative regulation of Wg signaling by Sulf1, we studied the effects of Sulf1 on HS-Wg interaction and Wg stability. Sulf1 overexpression strongly inhibited the binding of Wg to Dally, a potential target heparan sulfate proteoglycan of Sulf1. This effect of Drosophila Sulf1 on the HS-Wg interaction is similar to that of vertebrate Sulfs. Using in vitro, in vivo, and ex vivo systems, we show that Sulf1 reduces extracellular Wg protein levels, at least partly by facilitating Wg degradation. In addition, expression of human Sulf1 in the Drosophila wing disc lowers the levels of extracellular Wg protein, as observed for Drosophila Sulf1. Our study demonstrates that vertebrate and Drosophila Sulfs have an intrinsically similar activity and that the function of Sulfs in the fate of Wnt/Wg ligands is context-dependent.  相似文献   

4.
Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.  相似文献   

5.
Adult muscle stem cells, satellite cells (SCs), endow skeletal muscle with tremendous regenerative capacity. Upon injury, SCs activate, proliferate, and migrate as myoblasts to the injury site where they become myocytes that fuse to form new muscle. How migration is regulated, though, remains largely unknown. Additionally, how migration and fusion, which both require dynamic rearrangement of the cytoskeleton, might be related is not well understood. c-MET, a receptor tyrosine kinase, is required for myogenic precursor cell migration into the limb for muscle development during embryogenesis. Using a genetic system to eliminate c-MET function specifically in adult mouse SCs, we found that c-MET was required for muscle regeneration in response to acute muscle injury. c-MET mutant myoblasts were defective in lamellipodia formation, had shorter ranges of migration, and migrated slower compared to control myoblasts. Surprisingly, c-MET was also required for efficient myocyte fusion, implicating c-MET in dual functions of regulating myoblast migration and myocyte fusion.  相似文献   

6.
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.  相似文献   

7.
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.  相似文献   

8.
Skeletal muscle regeneration following injury results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Infiltrating macrophages play an essential role in the process partly by clearing the necrotic cell debris, partly by producing cytokines that guide myogenesis. Infiltrating macrophages are at the beginning pro-inflammatory, but phagocytosis of dead cells induces a phenotypic change to become healing macrophages that regulate inflammation, myoblast fusion and growth, fibrosis, vascularization and return to homeostasis. The TAM receptor kinases Mer and Axl are known efferocytosis receptors in macrophages functioning in tolerogenic or inflammatory conditions, respectively. Here we investigated their involvement in the muscle regeneration process by studying the muscle repair following cardiotoxin-induced injury in Mer−/− mice. We found that Axl was the only TAM kinase receptor expressed on the protein level by skeletal muscle and C2C12 myoblast cells, while Mer was the dominant TAM kinase receptor in the CD45+ cells, and its expression significantly increased during repair. Mer ablation did not affect the skeletal muscle weight or structure, but following injury it resulted in a delay in the clearance of necrotic muscle cell debris, in the healing phenotype conversion of macrophages and consequently in a significant delay in the full muscle regeneration. Administration of the TAM kinase inhibitor BMS-777607 to wild type mice mimicked the effect of Mer ablation on the muscle regeneration process, but in addition, it resulted in a long-persisting necrotic area. Finally, in vitro inhibition of TAM kinase signaling in C2C12 myoblasts resulted in decreased viability and in impaired myotube growth. Our work identifies Axl as a survival and growth receptor in the mouse myoblasts, and reveals the contribution of TAM kinase-mediated signaling to the skeletal muscle regeneration both in macrophages and in myoblasts.Subject terms: Mechanisms of disease, Immunological disorders  相似文献   

9.
Regulation of Wnt signaling is crucial for embryonic development and adult homeostasis. Here we study the role of Syndecan-4 (SDC4), a cell-surface heparan sulphate proteoglycan, and Fibronectin (FN), in Wnt/β-catenin signaling. Gain- and loss-of-function experiments in mammalian cell lines and Xenopus embryos demonstrate that SDC4 and FN inhibit Wnt/β-catenin signaling. Epistatic and biochemical experiments show that this inhibition occurs at the cell membrane level through regulation of LRP6. R-spondin 3, a ligand that promotes canonical and non-canonical Wnt signaling, is more prone to potentiate Wnt/β-catenin signaling when SDC4 levels are reduced, suggesting a model whereby SDC4 tunes the ability of R-spondin to modulate the different Wnt signaling pathways. Since SDC4 has been previously related to non-canonical Wnt signaling, our results also suggest that this proteoglycan can be a key component in the regulation of Wnt signaling.  相似文献   

10.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

11.
Patients with advanced congestive heart failure (CHF) or chronic kidney disease (CKD) often have increased angiotensin II (Ang II) levels and cachexia. Ang II infusion in rodents causes sustained skeletal muscle wasting and decreases muscle regenerative potential through Ang II type 1 receptor (AT1R)-mediated signaling, likely contributing to the development of cachexia in CHF and CKD. However, the potential role of Ang II type 2 receptor (AT2R) signaling in skeletal muscle physiology is unknown. We found that AT2R expression was increased robustly in regenerating skeletal muscle after cardiotoxin (CTX)-induced muscle injury in vivo and differentiating myoblasts in vitro, suggesting that the increase in AT2R played an important role in regulating myoblast differentiation and muscle regeneration. To determine the potential role of AT2R in muscle regeneration, we infused C57BL/6 mice with the AT2R antagonist PD123319 during CTX-induced muscle regeneration. PD123319 reduced the size of regenerating myofibers and expression of the myoblast differentiation markers myogenin and embryonic myosin heavy chain. On the other hand, AT2R agonist CGP42112 infusion potentiated CTX injury-induced myogenin and embryonic myosin heavy chain expression and increased the size of regenerating myofibers. In cultured myoblasts, AT2R knockdown by siRNA suppressed myoblast differentiation marker expression and myoblast differentiation via up-regulation of phospho-ERK1/2, and ERK inhibitor treatment completely blocked the effect of AT2R knockdown. These data indicate that AT2R signaling positively regulates myoblast differentiation and potentiates skeletal muscle regenerative potential, providing a new therapeutic target in wasting disorders such as CHF and CKD.  相似文献   

12.
13.
RhoE controls myoblast alignment prior fusion through RhoA and ROCK   总被引:2,自引:0,他引:2  
Differentiation of skeletal myoblasts into multinucleated myotubes is a multi-step process orchestrated by several signaling pathways. The Rho small G protein family plays critical roles both during myogenesis induction and myoblast fusion. We report here that in C2C12 myoblasts, expression of RhoE, an atypical member of this family, increases until the onset of myoblast fusion before resuming its basal level once fusion has occurred. We show that RhoE accumulates in elongated, aligned myoblasts prior to fusion and that its expression is also increased during injury-induced skeletal muscle regeneration. Moreover, although RhoE is not required for myogenesis induction, it is essential for myoblast elongation and alignment before fusion and for M-cadherin expression and accumulation at the cell-cell contact sites. Myoblasts lacking RhoE present with defective p190RhoGAP activation and RhoA inhibition at the onset of myoblast fusion. RhoE interacts also with the RhoA effector Rho-associated kinase (ROCK)I whose activity must be downregulated to allow myoblast fusion. Consistently, we show that pharmacological inactivation of RhoA or ROCK restores myoblast fusion in RhoE-deficient myoblasts. RhoE physiological upregulation before myoblast fusion is responsible for the decrease in RhoA and ROCKI activities, which are required for the fusion process. Therefore, we conclude that RhoE is an essential regulator of myoblast fusion.  相似文献   

14.
The role of a β-D-galactosyl-specific lectin, first reported by Teichberg et al., in the fusion of myoblasts in vitro was investigated. The concentration of this lectin in embryonic chick skeletal muscle was found to reach maximal levels at the time of myoblast fusion in vivo. β-D-Galactosyl-β-thiogalactopyranoside and lactose are potent inhibitors of agglutination of trypsinized rabbit erythrocytes caused by the lectin. However, at concentrations of 50 mM these compounds had no effect on either nonsynchronous fusion of myoblasts or on the release of synchronized myoblast cultures from EGTA fusion block. The presence of the agglutinin in the external membranes of chick myoblasts and myotubes could not be demonstrated. It is, therefore, concluded that the involvement of the lectin in the fusion of chick myoblasts remains questionable.  相似文献   

15.
16.
Duchenne muscular dystrophy (DMD) caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs) are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD). However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.  相似文献   

17.
BackgroundHeparan sulfate (HS) is a sulfated linear polysaccharide on cell surfaces that plays an important role in physiological processes. HS is present in skeletal muscles but its detailed role in this tissue remains unclear.MethodsWe examined the role of HS in the differentiation of C2C12 cells, a mouse myoblast cell line. We also phenotyped the impact of HS deletion in mouse skeletal muscles on their functions by using Cre-loxP system.ResultsCRISPR-Cas9-dependent HS deletion or pharmacological removal of HS dramatically impaired myoblast differentiation of C2C12 cells. To confirm the importance of HS in vivo, we deleted Ext1, which encodes an enzyme essential for HS biosynthesis, specifically in the mouse skeletal muscles (referred to as mExt1CKO mice). Treadmill and wire hang tests demonstrated that mExt1CKO mice exhibited muscle weakness. The contraction of isolated soleus muscles from mExt1CKO mice was also impaired. Morphological examination of mExt1CKO muscle tissue under light and electron microscopes revealed smaller cross sectional areas and thinner myofibrils. Finally, a model of muscle regeneration following BaCl2 injection into the tibialis anterior muscle of mice demonstrated that mExt1CKO mice had reduced expression of myosin heavy chain and an increased number of centronucleated cells. This indicates that muscle regeneration after injury was attenuated in the absence of HS expression in muscle cells.SignificanceThese results demonstrate that HS plays an important role in skeletal muscle function by promoting differentiation.  相似文献   

18.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.  相似文献   

19.
20.
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5nLacZ/+ mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号