首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used immunocytochemical staining to localize the RLM6 form of cytochrome P-450 in rat brain. Immunofluorescence staining in vibratome sections was positive in cells that resembled oligodendrocytes, which are the cells that synthesize and maintain myelin. Double immunofluorescence staining with anti-RLM6, plus mouse monoclonal antibodies (MAb) against 2',3'-cyclic nucleotide-3'-phosphohydrolase or galactocerebrosides, showed localization of each of these oligodendrocyte "markers" in the same cells as RLM6. In vibratome sections from brains of adult rats there was faint RLM6 immunostaining in some of the myelinated fibers as well as in oligodendrocytes. In paraffin sections from adult rat brains, myelinated tracts were RLM6 positive, as were oligodendrocytes and myelinated fibers in the gray matter. Oligodendrocytes were also shown to contain glucose-6-phosphate dehydrogenase. We suggest that RLM6, which is constitutive to liver, is also constitutive to brain and, via the acetone monooxygenase reaction, which also utilizes NADPH, may contribute to the conversion of ketone bodies to substrates that could provide energy for the synthesis and maintenance of myelin.  相似文献   

2.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

3.
Abstract: Carbonic anhydrase (CA) II is the major CA isozyme in the brain, where it participates in acid-base homeostasis, fluid transport, and myelin synthesis. The CA II deficiency [CA(II)D] mutation in the mouse results in structural changes in the glial cells in the CNS and in decreased susceptibility to seizures, but no detectable changes in myelin yield and ultrastructure. We compared the CA isozymes in brain and spinal cord fractions, as well as in purified myelin, between CA(II)D and control mice. CA(II)D resulted in a much lower total CA specific activity in all tissues examined but in higher CA IV specific activities in soluble and membrane-associated fractions and pure myelin. Western blots of purified myelin showed a band corresponding to CA IV in CA(II)D mice. This band was weak or undetectable in myelin samples from normal mice. Immunocytochemical staining demonstrated CA IV in oligodendrocytes and myelinated tracts in normal mouse brains and stronger staining of the same structures in brains of CA(II)D mutants. We conclude that CA(II)D mutation in the mouse up-regulates CNS CA IV. We speculate that this up-regulation could mitigate the effect of CA(II)D on myelin formation and maintenance.  相似文献   

4.
The activities of three myelin-associated enzymes, carbonic anhydrase, 5'-nucleotidase, and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP), were measured in oligodendrocytes, neurons, and astrocytes isolated from the brain of rats 10, 20, 60, and 120 days old. The carbonic anhydrase specific activity in oligodendrocytes was three- to fivefold higher than that in brain homogenates at each age, and, at all the ages, low activities of this enzyme were measured in neurons and astrocytes. The oligodendrocytes and astrocytes from the brains of rats at all ages had higher activities of the membrane-bound enzyme 5'-nucleotidase than was observed in neurons. In oligodendrocytes from 10- and 20-day-old rats, the 5'-nucleotidase activity was two-to threefold the activity in the homogenates (i.e., relative specific activity = 2.0-3.0), and the relative specific activity of this enzyme in the oligodendrocytes declined to less than 1.0 at the later ages, concomitant with the accumulation of 5'-nucleotidase in myelin. The CNP activity was always higher in oligodendrocytes than in neurons, but not appreciably different from that in astrocytes from 20 days of age onward. The relative specific activity of CNP was highest in the oligodendrocytes from 10-day-old rats but was lower, at all ages, than we had observed in bovine oligodendrocytes. These enzyme activities in oligodendroglia are quite different in amount and developmental pattern from those reported previously for myelin.  相似文献   

5.
Both late-gestation and adult human forebrain contain large numbers of oligodendrocyte progenitor cells (OPCs). These cells may be identified by their A2B5(+)PSA-NCAM(-) phenotype (positive for the early oligodendrocyte marker A2B5 and negative for the polysialylated neural cell adhesion molecule). We used dual-color fluorescence-activated cell sorting (FACS) to extract OPCs from 21- to 23-week-old fetal human forebrain, and A2B5 selection to extract these cells from adult white matter. When xenografted to the forebrains of newborn shiverer mice, fetal OPCs dispersed throughout the white matter and developed into oligodendrocytes and astrocytes. By 12 weeks, the host brains showed extensive myelin production, compaction and axonal myelination. Isolates of OPCs derived from adult human white matter also myelinated shiverer mouse brain, but much more rapidly than their fetal counterparts, achieving widespread and dense myelin basic protein (MBP) expression by 4 weeks after grafting. Adult OPCs generated oligodendrocytes more efficiently than fetal OPCs, and ensheathed more host axons per donor cell than fetal cells. Both fetal and adult OPC phenotypes mediated the extensive and robust myelination of congenitally dysmyelinated host brain, although their differences suggested their use for different disease targets.  相似文献   

6.
We describe a novel fluorescent dye, 3-(4-aminophenyl)-2H-chromen-2-one (termed case myelin compound or CMC), that can be used for in situ fluorescent imaging of myelin in the vertebrate nervous system. When administered via intravenous injection into the tail vein, CMC selectively stained large bundles of myelinated fibers in both the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS, CMC readily entered the brain and selectively localized in myelinated regions such as the corpus callosum and cerebellum. CMC also selectively stained myelinated nerves in the PNS. The staining patterns of CMC in a hypermyelinated mouse model were consistent with immunohistochemical staining. Similar to immunohistochemical staining, CMC selectively bound to myelin sheaths present in the white matter tracts. Unlike CMC, conventional antibody staining for myelin basic protein also stained oligodendrocyte cytoplasm in the striatum as well as granule layers in the cerebellum. In vivo application of CMC was also demonstrated by fluorescence imaging of myelinated nerves in the PNS. (J Histochem Cytochem 58:611–621, 2010)  相似文献   

7.
Glutathione-S-transferase Yb subunits were recently identified in rat brain and localized to astrocytes, ependymal cells lining the ventricles, subventricular zone cells, and tanycytes. Another isoform, Yp (pi family), was detected in rat brain by immunoblotting, and its mRNA was detected by Northern hybridizations. Double immunofluorescence localized Yb and Yp in different glial cells. The strongly Yp-positive cells were identified as oligodendrocytes by virtue of their arrangement in rows in white-matter tracts, colocalization in strongly carbonic anhydrase-positive cells, and association with myelinated tracts in the corpus striatum. Ependymal cells in the choroid plexus and ventricular lining were also strongly Yp positive, whereas Yb was not detected in the choroid plexus. The occurrence of Yp at low levels in astrocytes was indicated after immunostaining by a sensitive peroxidase-antiperoxidase method, which revealed weak staining of those cells in the molecular layer of the cortex. The data suggest that Yb and Yp subunits are primarily localized to astrocytes and oligodendrocytes, respectively, and that both are absent from neurons. The glutathione-S-transferase in oligodendrocytes may participate in the removal of toxins from the vicinity of the myelin sheath. The finding of glutathione-S-transferases in ependymal cells and astrocytes in the brain also suggests that this enzyme could be a first line of defense against toxic substances.  相似文献   

8.
The presence of degradation products of the myelin/oligodendrocyte glycoprotein (MOG) and a new myelin/oligodendrocyte associated protein, FD1, defined by a monoclonal antibody was established in a subfraction (the floating fraction, or FF) of adult rabbit CNS. The histochemical distribution of FD1 was determined by indirect immunofluorescense using conventional and confocal microscopy. FD1 was found to be present in oligodendrocytes, and at the outer rim of CNS myelin sheaths. Strong antibody reactivity was noted at nodes of Ranvier, as well as in regions with a high nodal density. No staining of compact myelin was seen. In the PNS, inner and outer cytoplasmic compartments of the Schwann cells as well as their cell bodies were stained, with no staining of compact myelin. The FF has previously been shown to be highly enriched in Marchi-positive bodies. These structures are situated paranodally in the CNS of myelinated nerve fibers, and their presence has been interpreted as reflections of myelin breakdown and turnover occurring in association with myelin sheath segments situated close to nodes at Ranvier in adult, normal vertebrate CNS. The present findings extend previous observations of partially degraded myelin-associated proteins in the FF, and give further results indicating that Marchi-positive bodies are aspects of intermediate stages in myelin catabolism.  相似文献   

9.
Monospecific antibodies were prepared to a previously characterized chondroitin sulfate proteoglycan of brain and used in conjunction with the peroxidase-antiperoxidase technique to localize the proteoglycan by immunoelectron microscopy. The proteoglycan was found to be exclusively intracellular in adult cerebellum, cerebrum, brain stem, and spinal cord. Some neurons and astrocytes (including Golgi epithelial cells and Bergmann fibers) showed strong cytoplasmic staining. Although in the central nervous system there was heavy axoplasmic staining of many myelinated and unmyelinated fibers, not all axons stained. Staining was also seen in retinal neurons and glia (ganglion cells, horizontal cells, and Muller cells), but several central nervous tissue elements were consistently unstained, including Purkinje cells, oligodendrocytes, myelin, optic nerve axons, nerve endings, and synaptic vesicles. In sympathetic ganglion and peripheral nerve there was no staining of neuronal cell bodies, axons, myelin, or Schwann cells, but in sciatic nerve the Schwann cell basal lamina was stained, as was the extracellular matrix surrounding collagen fibrils. Staining was also observed in connective tissue surrounding the trachea and in the lacunae of tracheal hyaline cartilage. These findings are consistent with immunochemical studies demonstrating that antibodies to the chondroitin sulfate proteoglycan of brain also cross-react to various degrees with certain connective tissue proteoglycans.  相似文献   

10.
Glutamine synthetase (GS, EC 6.3.1.2.) has long been considered as a protein specific for astrocytes in the brain, but recently GS immunoreactivity has been reported in oligodendrocytes both in mixed primary glial cell cultures and in vivo. We have investigated its expression and regulation in "pure" oligodendrocyte cultures. "Pure" oligodendrocyte secondary cultures were derived from newborn rat brain primary cultures enriched in oligodendrocytes as described by Besnard et al. (1987) and were grown in chemically defined medium. These cultures contain more than 90% galactocerebroside-positive oligodendrocytes and produce "myelin" membranes (Fressinaud et al., 1990) after 6-10 days in subcultures (30-35 days, total time in culture). The presence of GS in oligodendrocytes from both primary glial cell cultures and "pure" oligodendrocyte cultures was confirmed by double immunostaining with a rabbit antisheep GS and guinea pig antirat brain myelin 2', 3'-cyclic nucleotide 3'-phosphodiesterase. In "pure" oligodendrocyte cultures, about half of cells were labeled with anti-GS antibody. Furthermore, on the immunoblot performed with a rabbit antisheep GS, the GS protein in "pure" oligodendrocyte secondary cultures was visualized as a single band with an apparent molecular mass of about 43 kDa. In contrast, two protein bands for GS were observed in cultured astrocytes. On the immunoblot performed with a rabbit antichick GS, two immunopositive protein bands were observed: a major one migrating as the purified adult chick brain GS and a minor one with a lower molecular mass. Two similar immunoreactive bands were also observed in pure rat astrocyte cultures. Compared to pure rat astrocyte cultures, "pure" oligodendrocyte cultures of the same age displayed an unexpectedly high GS specific activity that could not be explained by astrocytic contamination of the cultures (less than 5%). As for cultured astrocytes, treatment of oligodendrocyte cultures with dibutyryl-adenosine 3':5'-cyclic monophosphate, triiodothyronine, or hydrocortisone increased significantly GS specific activity. Interestingly, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor that increase the GS activity in astrocytes do not affect this activity in oligodendrocytes. Thus we confirm the finding of Warringa et al. (1988) that GS is also expressed in oligodendrocytes. We show that its activity is regulated similarly in astrocytes and oligodendrocytes by hormones, but that it is regulated differently by growth factors in these two cell types.  相似文献   

11.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

12.
13.
Cammer  Wendy; Zhang  Hong 《Glycobiology》1993,3(6):627-631
To distinguish macroglia (oligodendrocytes and astrocytes) frommicroglia in the brain, ‘markers’ that have beenused in previous studies include carbonic anhydrase II (CAII)immunoreactivity for macroglia, and Ricinusand Bandeiraea(BS-I)lectins for microglia. However, in rats <1 week of age, manycells stained intensely with both anti-CAII and the labelledBS-I lectin. If some of the BS-I+/CAII+ cells were macroglia,and not microglia, BS-I should no longer be regarded as specificfor microglia. To confirm or rule out that possibility, lectinhistochemistry and double immunofluorescence staining were performedin tissue from the brains of normal young rats and from themicroglial cell-enriched brains of myelin-deficient mutant rats.BS-I+/ CAII+ cells were found and examined. The BS-I +/CAII-cellsresembled macrophages and microglia and did, indeed, differin sizes and shapes from the BS-I+/+cells. The BS-I+/CAII+ cellsappeared to represent CAII+ putative oligodendrocyte precursorsdescribed previously. Although less obvious, a lectin-bindingstructure was also observed in astrocytes. Lectins may cross-reactwith macroglial glycoproteins. For example, a glycoprotein foundin o ligodendrocytes and myelin, the myelin-associated glycoprotein(MAG), is related to the Ig superfamily and cell adhesion molecules.Therefore, it is cautioned that lectins and antibodies againstmembers of the latter families of proteins should be used ascell-type specific markers only if other parameters are alsoexamined. astrocytes carbonic anhydrase lectins microglia oligodendrocytes  相似文献   

14.
The cellular distribution and intracellular localization of neuron-specific enolase (NSE) has been studied by electron microscopic immunocytochemistry in the brain of the rat and of the mouse. Although the intensity of staining was less in the mouse, the same structures were positive in both species. In the cerebrum, the neuronal perikarya and dendrites were intensely stained, but staining was almost entirely absent in the presynaptic terminals. The deep neurons of the brain stem were also positive. In the cerebellum, perikarya, axons, and parallel fibers of the granule cell neurons were stained as were the synaptic vesicles and presynaptic membranes of the synapses between the parallel fibers and the Purkinje cell dendrites. Golgi cell dendrites, basket cells and their axons, and mossy fibers were also positive. In contrast, the Purkinje cells including their dendrites, and the climbing fibers that formed synapses with the Purkinje cell dendrites were not stained. The majority of the myelinated axons in both the cerebrum and the cerebellum did not stain, but the fibrillary astrocytic processes between myelinated axons in the white matter did. Oligodendroglia, protoplasmic astrocytes, Bergmann glia, astrocytes investing capillaries, and vascular endothelial cells were negative for reaction product. In the positively staining cells and their processes, the positivity was dispersed throughout the cytoplasm and corresponded most closely to the distribution of ribosomes, the granular endoplasmic reticulum, and microtubules. Nuclei, mitochondria, the cisternae of the Golgi complex, myelin lamellae, and most membranes were not stained.  相似文献   

15.
Carbonic anhydrase (CA) was studied in primary monolayer cultures from neonatal rat cerebral hemispheres with both immunocytochemical and biochemical techniques. In such cultures, which consist predominantly of astrocytes, immunocytochemical staining for CA using antibody raised against the type II enzyme from rat erythrocytes resulted in positive staining of the flat, glial fibrillary acidic protein-positive, astrocytic monolayer. Smaller, process-bearing, round cells that grew on top of the astrocytes stained intensely for CA. We estimated that these cells represented 1% or less of the total cells in the cultures, and they have been identified by others as oligodendrocytes. The intensity of the staining of astrocytes for CA could be increased to that observed in oligodendrocytes when the astrocytes were made to round up and form processes by treatment with 2',3'-dibutyryl cyclic AMP. Enzymatic assays showed that CA activity of the cultures after 3 weeks of growth was 2.5- to 5-fold less than that found for cerebral homogenates from perfused 3-week-old rat brains. However, both activities were totally inhibited by acetazolamide with an I50 of 10(-8) M, confirming that both rat brain and the astrocyte cultures possess the high-activity type II enzyme. CA-II activity was unaffected by treatment of the cultures with a method reported to remove oligodendrocytes. Thus, the immunocytochemical and biochemical studies reported here demonstrate that astroglial cells in primary cultures from neonatal rat brain contain CA-II.  相似文献   

16.
Carbonic Anhydrase Immunostaining in Astrocytes in the Rat Cerebral Cortex   总被引:7,自引:3,他引:4  
Carbonic anhydrase is known to occur in the choroid plexus, oligodendrocytes, and myelin, and to be virtually absent from neurons, in the mammalian CNS; however, there is significant controversy whether it is also present in astrocytes. When brain sections from adult rats were stained for simultaneous immunofluorescence of carbonic anhydrase and the astrocyte marker glutamine synthetase, both antigens were detected in the same glial cells in the cortical gray matter, whereas the oligodendrocytes and myelinated fibers in and adjacent to the white matter showed immunofluorescence only for carbonic anhydrase. Some glial cells in the gray matter also showed double immunofluorescence for carbonic anhydrase and glial fibrillary acidic protein. These results indicate that there is carbonic anhydrase in some astrocytes in the mammalian CNS.  相似文献   

17.
The results of recent immunocytochemical experiments suggest that glutamine synthetase (GS) in the rat CNS may not be confined to astrocytes. In the present study, GS activity was assayed in oligodendrocytes isolated from bovine brain and in oligodendrocytes, astrocytes, and neurons isolated from rat forebrain, and the results were compared with new immunochemical data. Among the cells isolated from rat brain, astrocytes had the highest specific activities of GS, followed by oligodendrocytes. Oligodendrocytes isolated from white matter of bovine brain had GS specific activities almost fivefold higher than those in white matter homogenates. Immunocytochemical staining also showed the presence of GS in both oligodendrocytes and astrocytes in bovine forebrain, in three white-matter regions of rat brain, and in Vibratome sections as well as paraffin sections.  相似文献   

18.
In mammals, the oligodendrocyte population includes morphological and molecular varieties. We reported previously that an antiserum against the T4-O molecule labels a subgroup of oligodendrocytes related to large myelinated axons in adult chicken white matter. We also reported that T4-O immunoreactive cells first appear in the developing ventral funiculus (VF) at embryonic day (E)15, subsequently increasing rapidly in number. Relevant fine structural data for comparison are not available in the literature. This prompted the present morphological analysis of developing and mature VF white matter in the chicken. The first axon-oligodendrocyte connections were seen at E10 and formation of compact myelin had started at E12. Between E12 and E15 the first myelinating oligodendrocytes attained a Schwann cell-like morphology. At hatching (E21) 60% of all VF axons were myelinated and in the adult this proportion had increased to 85%. The semilunar or polygonal oligodendrocytes associated with adult myelinated axons contained many organelles indicating a vivid metabolic activity. Domeshaped outbulgings with gap junction-like connections to astrocytic profiles were frequent. Oligodendrocytes surrounded by large myelinated axons and those surrounded by small myelinated axons were cytologically similar. But, thick and thin myelin sheaths had dissimilar periodicities and Marchi-positive myelinoid bodies occurred preferentially in relation to large myelinated axons. We conclude that early oligodendrocytes contact axons and form myelin well before the first expression of T4-O and that emergence of a T4-O immunoreactivity coincides in time with development of a Type IV phenotype. Our data also show that oligodendrocytes associated with thick axons are cytologically similar to cells related to thin axons. In addition, the development of chicken VF white matter was found to be similar to the development of mammalian white matter, except for the rapid time course.  相似文献   

19.
Elucidation of the mechanisms involved in the regeneration of oligodendrocytes and remyelination is a central issue in multiple sclerosis (MS) research. We recently identified a novel alternatively spliced, developmentally regulated oligodendrocyte-specific protein designated microtubule-associated protein-2+13 [microtubule-associated protein-2 expressing exon 13 (MAP-2+13)]. MAP-2+13 is expressed in human fetal oligodendrocytes during process extension and myelination but is minimally expressed in normal mature CNS. To test the hypothesis that MAP-2+13 is reexpressed in regenerating oligodendrocytes in MS lesions, we examined the brains of MS patients for the expression of this protein. By immunocytochemistry using a series of monoclonal antibodies specific for MAP-2+13, we determined that MAP-2+13 expression was up-regulated in all 31 lesions from 10 different MS brains. MAP-2+13 was expressed in regenerating oligodendrocytes associated with demyelinated lesions, with the highest counts found in regions of extensive remyelination. By electron microscopy, MAP-2+13 was localized to oligodendrocytes engaged in remyelination, evident by their process extension and association with thinly myelinated (remyelinated) and demyelinated axons. These results suggest a hitherto unsuspected role for this microtubule-associated protein in oligodendrocyte function during development and myelin repair.  相似文献   

20.
Myelin is a multilamellar membrane structure primarily composed of lipids and myelin proteins essential for proper neuronal function. Since myelin is a target structure involved in many pathophysiological conditions such as metabolic, viral, and autoimmune diseases and genetic myelin disorders, a reliable myelin detection technique is required that is equally suitable for light- and electron-microscopic analysis. Here, we report that single myelinated fibers are specifically stained by the gold phosphate complex, Black gold, which stains myelin in the brain, spinal cord, and peripheral nerve fibers in a reliable manner. Electron-microscopic and morphometric analyses have revealed that gold particles are equally distributed in the inner, compact, and outer myelin layers. In contrast to Luxol fast blue, the gold dye stains proteinase-sensitive myelin structures, indicating its selective labeling of myelin-specific proteins. Aiming at defining the target of gold staining, we performed staining in several mouse myelin mutants. Gold complex distribution and myelin staining in MBP−/−/shiverer mouse mutants was comparable with that seen in wild-type mice but revealed a more clustered Black gold distribution. This gold staining method thus provides a sensitive and specific high-resolution marker for both central and peripheral myelin sheaths; it also allows the quantitative analysis of myelinated fibers at the light- and electron-microscopic level suitable for investigations of myelin and axonal disorders. This study was supported by grants from the International Human Frontier Science Program Organization (HFSPO, to N.E.S.) and the Danone Institute (to N.E.S. and I.Y.E.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号