首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin-labeled analogs of phospholipids have been used widely to characterize the biophysical properties of membranes. We describe synthesis and application of a new spin-labeled phospholipid analog, SL-POPC. The advantage of this molecule is that the EPR active doxyl group is linked to an unsaturated fatty acyl chain different to saturated phospholipid analogs used so far. The need for those analogs arises from the fact that biological membranes contain unsaturated phospholipids to a large extent. The biophysical properties of SL-POPC in membranes were characterized using EPR and NMR spectroscopy and compared with those of the saturated spin-labeled phospholipid, SL-PSPC. To this end, POPC membranes were labeled with either analog to assess whether the spin-labeled counterpart SL-POPC mimics the membrane properties better than the often used SL-PSPC. The results show that SL-POPC and SL-PSPC explore different molecular environments of the bilayer, and that the type and degree of perturbation of bilayer caused by the label moiety also differs between both analogs. We found that SL-POPC is more appropriate to assess the versatile dynamics of POPC membranes than SL-PSPC.  相似文献   

2.
Phospholamban (PLB) is a 52-amino acid integral membrane protein that regulates the flow of Ca(2+) ions in cardiac muscle cells. In the present study, the transmembrane domain of PLB (24-52) was incorporated into phospholipid bilayers prepared from 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC). Solid-state (31)P and (2)H NMR experiments were carried out to study the behavior of POPC bilayers in the presence of the hydrophobic peptide PLB at temperatures ranging from 30 degrees C to 60 degrees C. The PLB peptide concentration varied from 0 mol % to 6 mol % with respect to POPC. Solid-state (31)P NMR spectroscopy is a valuable technique to study the different phases formed by phospholipid membranes. (31)P NMR results suggest that the transmembrane protein phospholamban is incorporated successfully into the bilayer and the effects are observed in the lipid lamellar phase. Simulations of the (31)P NMR spectra were carried out to reveal the formation of different vesicle sizes upon PLB insertion. The bilayer vesicles fragmented into smaller sizes by increasing the concentration of PLB with respect to POPC. Finally, molecular order parameters (S(CD)) were calculated by performing (2)H solid-state NMR studies on deuterated POPC (sn-1 chain) phospholipid bilayers when the PLB peptide was inserted into the membrane.  相似文献   

3.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of ζ-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

4.
The molecular organization of sterols in liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 37 degrees C is examined by utilizing the fluorescent analogue of cholesterol cholesta-5,7,9-trien-3 beta-ol (cholestatrienol). (1) Cholestatrienol is shown to be indistinguishable from native cholesterol in terms of its ability to condense POPC, as determined by (i) pressure/area studies of mixed-lipid monolayers and (ii) its ability to increase the order of POPC bilayers (determined by electron spin resonance studies) whether on its own or admixed with cholesterol at various ratios. (2) By analysis of the perturbation of the absorption spectra, cholestatrienol was found to be freely miscible in aggregates of cholesterol in buffer. In contrast, a lack of any detectable direct interaction of the sterol molecules in POPC bilayers was detected. (3) Fluorescence intensity and lifetime measurements of POPC/sterol (1:1 mol/mol) at various cholesterol/cholestratrienol molar ratios (0.5:1 up to 1:1 cholestatrienol/POPC) confirmed that sterol molecules in the membrane matrix were not associated to any great degree. (4) A quantitative estimate of how close sterol molecules approach each other in the membrane matrix was evaluated from the concentration dependence of the steady-state depolarization of fluorescence and was found to be 10.6 A. From geometrical considerations, the sterol/phospholipid phase at 1:1 mol/mol is depicted as each sterol having four POPC molecules as nearest neighbors. We term this arrangement of the lipid matrix an "ordered bimolecular mesomorphic lattice". (5) The concentration dependence of depolarization of fluorescence of cholestatrienol in POPC liposomes in the absence of cholesterol yielded results that were consistent with the cholestatrienol molecules being homogeneously dispersed throughout the phospholipid phase at sterol/POPC ratios of less than 1:1. (6) From qualitative calculations of the van der Walls' hydrophobic interactions of the lipid species, the phospholipid condensing effect of cholesterol is postulated to arise from increased interpenetration of the flexible methylene segments of the acyl chains, as a direct result of their greater mutual attraction compared to their attraction for neighboring sterol molecules. (7) The interdependence of the ordered bimolecular mesomorphic lattice and the acyl chain condensation is discussed in an effort to understand the ability of cholesterol to modulate the physical and mechanical properties of biological membranes.  相似文献   

5.
Accurately predicting the structural properties of phospholipid with a fully atomistic molecular model is critical for the study of pure phospholipid bilayers, mixed bilayer systems and bilayers containing proteins. The general amber force field (GAFF) has traditionally required the presence of a surface tension parameter to correctly model phospholipid bilayer properties such as area per lipid and order parameters. In this work, the GAFF partial charges for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphochiline (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) were re-parameterised utilising high-level ab initio calculations and the restrained electrostatic potential method. Simulations of pure POPA, POPC and POPG bilayers using the charge-modified GAFF and no applied surface tension are compared with available experimental data, the original GAFF model and the recent Lipid14 variant. The results indicate a significant improvement in the accuracy of the lipid model for reproducing experimental observables without the need for a surface tension parameter. The successful application of modifying the lipid charge distributions represents an alternative to the use of a surface tension parameter within GAFF, and highlights the importance of the partial charge calculations when modelling lipid bilayers.  相似文献   

6.
《Biophysical journal》2021,120(21):4751-4762
A mesoscopic model with molecular resolution is presented for dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl oleoyl phosphatidylcholine (POPC) monolayer simulations at the air-water interface using many-body dissipative particle dynamics (MDPD). The parameterization scheme is rigorously based on reproducing the physical properties of water and alkane and the interfacial property of the phospholipid monolayer by comparison with experimental results. Using much less computing cost, these MDPD simulations yield a similar surface pressure-area isotherm as well as similar pressure-related morphologies as all-atom simulations and experiments. Moreover, the compressibility modulus, order parameter of lipid tails, and thickness of the phospholipid monolayer are quantitatively in line with the all-atom simulations and experiments. This model also captures the sensitive changes in the pressure-area isotherms of mixed DPPC/POPC monolayers with altered mixing ratios, indicating that the model is promising for applications with complex natural phospholipid monolayers. These results demonstrate a significant improvement of quantitative phospholipid monolayer simulations over previous coarse-grained models.  相似文献   

7.
Langmuir-Blodgett (LB) films of two heteroacid phospholipids of biological interest 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as well as a mixed monolayer with chi(POPC)=0.4, were transferred onto mica in order to investigate by a combination of atomic force microscopy (AFM) and force spectroscopy (FS) their height, and particularly, their nanomechanical properties. AFM images of such monolayers extracted at 30 mN m(-1) revealed a smooth and defect-free topography except for the POPE monolayer. Since scratching such soft monolayers in contact mode was proved unsuccessful, their molecular height was measured by means of the width of the jump present in the respective force-extension curves. While for pure POPC a small jump occurs near zero force, for the mixed monolayer with chi(POPC)=0.4 the jump occurs at approximately 800 pN. Widths of approximately 2 nm could be established for POPC and chi(POPC)=0.4, but not for POPE monolayer at this extracting pressure. Such different mechanical stability allowed us to directly measure the threshold area/lipid range value needed to induce mechanical stability to the monolayers. AFM imaging and FS were next applied to get further structural and mechanical insight into the POPE phase transition (LC-LC') occurring at pressures >36.5 mN m(-1). This phase transition was intimately related to a sudden decrease in the area/molecule value, resulting in a jump in the force curve occurring at high force ( approximately 1.72 nN). FS reveals to be the unique experimental technique able to unveil structural and nanomechanical properties for such soft phospholipid monolayers. The biological implications of the nanomechanical properties of the systems under investigation are discussed considering that the annular phospholipids region of some transmembrane proteins is enriched in POPE.  相似文献   

8.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of zeta-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

9.
(31)P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in (31)P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid (31)P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type (31)P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

10.
Apolipoprotein A-I (ApoA-I) is the principle protein component of HDL, also known as “good cholesterol,” which is an inverse marker for cardiovascular disease. The N-terminal 44 amino acids of ApoA-I (N44) are predicted to be responsible for stabilization of soluble ApoA-I, whereas the C-terminal 46 amino acids (C46) are predicted to initiate lipid binding and oligomerization. In this work, we apply what we believe to be a novel application of drop tensiometry to study the adsorption and desorption of N44 and C46 at a triolein/POPC/water (TO/POPC/W) interface. The amount of peptide that adsorbed to the surface was dependent on the surface concentration of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and pressure (Π) before adsorption. At a TO/POPC/W interface, the exclusion pressure (ΠEX) of C46 was 25.8 mN/m, and was 19.3 mN/m for N44. Once adsorbed, both peptides formed a homogeneous surface with POPC but were progressively ejected from the surface by compression. During a compression, C46 removed POPC from the surface whereas N44 did not. Repeated compressions caused C46 to deplete entirely the surface of phospholipid. If full-length ApoA-I could also remove phospholipid, this could provide a mechanism for the transfer of surface components of chylomicrons and very low density lipoprotein to high density lipoprotein with the assistance of phospholipid transfer protein.  相似文献   

11.
31P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in 31P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid 31P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type 31P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

12.
The interaction of anthracyclines (daunorubicin and idarubicin) with monolayers of zwitterionic palmitoyloleoylphosphatidylcholine (POPC) and anionic dipalmitoylphosphatidic acid (POPC-DPPA 80-20 mol%) was studied by surface pressure measurements and compared with previous results obtained with other anthracyclines (pirarubicin and adriamycin). These anthracycline/phospholipid monolayers were next transferred by a Langmuir-Blodgett technique onto planar supports and studied by surface-enhanced resonance Raman scattering (SERRS), which gave information about the orientation of anthracycline in the monolayers. On the whole, the adsorption of anthracyclines in zwitterionic monolayers increases with the anthracycline hydrophobic/hydrophilic balance, which underlines the role of the hydrophobic component of the interaction. On the contrary, the anthracyclines remain adsorbed on the polar headgroups of the phospholipids in the presence of DPPA and form a screen that limits a deeper penetration of other anthracycline molecules. To study by SERRS measurements the crossing of pirarubicin through a phospholipid bilayer used as a membrane model, asymmetrical POPC-DPPA/POPC or POPC/POPC-DPPA bilayers were transferred by the Langmuir-Schäfer method, thanks to a laboratory-built set-up, and put in contact with a pirarubicin aqueous solution. It has been shown that the presence of anionic DPPA in the first monolayer in contact with pirarubicin would limit its crossing. This limiting effet is not observed if the first monolayer is zwitterionic.  相似文献   

13.
Model high density lipoproteins containing human apolipoprotein A-I, cholesterol, and a variety of phosphatidylcholines (PCs) have been prepared and tested. The PCs included 1-palmitoyl-2-oleoyl PC (POPC) and its diether analog 1-O-hexadecyl-2-oleyl PC (POPC ether), 1,2-diphytanoyl PC (DPhPC), 1-palmitoyl-2-phytanoyl PC, and 1-phytanoyl-2-palmitoyl PC. All ester PCs were good acyl donors for the transesterification of cholesterol catalyzed by human lecithin-cholesterol acyltransferase except DPhPC, which showed no reactivity. The PCs containing one phytanoyl chain donated an acyl chain to cholesterol as fast as non-branched fatty acyl chains. However, the competitive inhibition of lecithin-cholesterol acyltransferase by POPC ether and DPhPC was similar, and both lipids formed a macromolecular matrix that supported the reactivity of other ester PC substrates. The bulk of physicochemical properties of model high density lipoproteins composed of DPhPC were indistinguishable from those of POPC ether. These properties included 1) alpha-helical content of the apoprotein as assessed by circular dichroism, 2) microviscosity as determined from the fluorescence polarization and lifetime of the probe 1,6-diphenyl-1,3,5-hexatriene, 3) macromolecular weight based upon analytical gel filtration chromatography, and 4) surface polarity revealed by the fluorescence of 6-propionyl-2(dimethylamino)naphthalene. The only major difference in a physicochemical property was that the molecular surface area of DPhPC (area = 69 A2 at collapse pressure) determined by monolayer methods was 17 A2 greater than that of POPC (area = 53 A2 at collapse pressure) at all surface pressures measured. We suggest that the properties of DPhPC in being enzymatically nonreactive but a competitive inhibitor are due to its much larger size and that the active site of lecithin-cholesterol acyltransferase cannot bind phospholipid substrates in a catalytically productive way if they have surface areas of 70 A2 or more.  相似文献   

14.
The helical order parameter of the 26-residue amphiphilic bee venom peptide melittin was measured by polarized attenuated total reflection infrared spectroscopy (ATR-IR) in dry phospholipid multibilayers (MBLs) and when bound to single supported planar bilayers (SPBs) under D2O. Melittin adopted an alpha-helical conformation in MBLs of dipalmitoyl-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), a 4:1 mixture of POPC and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and when bound to SPBs of POPC:POPG (4:1). The order parameter of the alpha-helix in the bilayers depended mainly on the type of membrane preparation, and only little on the phospholipid composition of the bilayers. On hydrated SPBs, the helical order parameter was negative, indicating that the alpha-helix long axis of melittin was preferentially oriented parallel to the plane of the supported membrane. However, in dry MBLs, the helical order parameter was positive, indicating that the alpha-helix of melittin was preferentially oriented parallel to the phospholipid fatty acyl chains. It is concluded that the orientation of melittin in membranes depends on the degree of hydration of the model membranes rather than on the technique which is used for its determination. ATR-IR spectroscopy of polypeptides in or associated with supported planar membranes in D2O may become a useful tool for the determination of their orientation in and on membranes.  相似文献   

15.
The conformational constraints for apoA-I bound to recombinant phospholipid complexes (rHDL) were attained from a combination of chemical cross-linking and mass spectrometry. Molecular distances were then used to refine models of lipid-bound apoA-I on both 80 and 96 A diameter rHDL particles. To obtain molecular constraints on the protein bound to phospholipid complexes, three different lysine-selective homo-bifunctional cross-linkers with increasing spacer arm lengths (i.e., 7.7, 12.0, and 16.1 A) were reacted with purified, homogeneous recombinant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) apoA-I rHDL complexes of each diameter. Cross-linked dimeric apoA-I products were separated from monomeric apoprotein using 12% SDS-PAGE, then subjected to in-gel trypsin digest, and identified by MS/MS sequencing. These studies aid in the refinement of our previously published molecular model of two apoA-I molecules bound to approximately 150 molecules of POPC and suggest that the protein hydrophobic interactions at the N- and C-terminal domains decrease as the number of phospholipid molecules or "lipidation state" of apoA-I increases. Thus, it appears that these incremental changes in the interaction between the N- and C-terminal ends of apoA-I stabilize its tertiary conformation in the lipid-free state as well as allowing it to unfold and sequester discrete amounts of phospholipid molecules.  相似文献   

16.
Interaction of bovine myelin basic protein and its constituent charge isomers (C1-C3) with phospholipid bilayers was studied using solid-state NMR experiments on model membranes. 31P NMR experiments on multilamellar vesicles and mechanically aligned bilayers were used to measure the degree of protein-induced disorder in the lipid headgroup region while 2H NMR data provided the disorder caused by the protein in the hydrophobic core of the bilayers. Our results suggest that MBP and its charge isomers neither fragment nor significantly disrupt DMPC, POPC, POPC:POPG, and POPE bilayers. These results demonstrate that the MBP-induced fragmentation of POPC bilayers is due to the freeze-thaw cycles used in the preparation of multilamellar vesicles and not due to intrinsic protein-lipid interactions.  相似文献   

17.
The arrangement of the antimicrobial peptide alamethicin was studied by oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry in ether-linked phospholipid bilayers composed of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DHPC). The measurements were performed as a function of alamethicin concentration relative to the lipid concentration, and results were compared to those reported in the literature for ester-linked phospholipid bilayers. At ambient temperature, alamethicin incorporates into the hydrophobic core of DHPC bilayers but results in more lipid disorder than observed for ester-linked 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayers. This orientational disorder appears to depend on lipid properties such as bilayer thickness. Moreover, the results suggest that alamethicin inserts into the hydrophobic core of the bilayers (at high peptide concentration) for both ether- and ester-linked lipids but using a different mechanism, namely toroidal for DHPC and barrel-stave for POPC.  相似文献   

18.
A molecular dynamics simulation of a mono-cis-unsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer containing approximately 22 mol% of cholesterol (POPC-Chol) was carried out for 15 ns. An 8-ns trajectory was analysed to determine the effects of Chol on the membrane properties and compare it with that on the fully saturated 1,2-dimyristoyl-phosphatidylcholine bilayer containing approximately 22 mol% of Chol (DMPC-Chol). The study suggests that the experimentally observed weaker effect of Chol on the POPC than DMPC bilayer might result from a different vertical localisation of the Chol hydroxyl group (OH-Chol) in both bilayers: in the POPC-Chol bilayer, OH-Chol is placed approximately 3 A higher in the bilayer interface than in the DMPC-Chol bilayer. Because of the rigid cis double bond in the beta-chain of POPC, Chol fits worse to the POPC-Chol membrane environment and is pushed up, in effect all Chol ring atoms are, on average, located above the double bond. Both in mono-cis-unsaturated and fully saturated PC bilayers, Chol induces stronger van der Waals interactions among the chains, whereas its interactions with the chains are weak. In contrast to DMPC, the smooth alpha-face of the Chol ring lowers the order of POPC chains, whereas the rough beta-face increases the order.  相似文献   

19.
For the first time, 15N solid-state NMR experiments were conducted on wild-type phospholamban (WT-PLB) embedded inside mechanically oriented phospholipid bilayers to investigate the topology of its cytoplasmic and transmembrane domains. 15N solid-state NMR spectra of site-specific 15N-labeled WT-PLB indicate that the transmembrane domain has a tilt angle of 13 degrees+/-6 degrees with respect to the POPC (1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine) bilayer normal and that the cytoplasmic domain of WT-PLB lies on the surface of the phospholipid bilayers. Comparable results were obtained from site-specific 15N-labeled WT-PLB embedded inside DOPC/DOPE (1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) mechanically oriented phospholipids' bilayers. The new NMR data support a pinwheel geometry of WT-PLB, but disagree with a bellflower structure in micelles, and indicate that the orientation of the cytoplasmic domain of the WT-PLB is similar to that reported for the monomeric AFA-PLB mutant.  相似文献   

20.
To better understand how ceramide modulates the biophysical properties of the membrane, the interactions between palmitoyl-ceramide (PCer) and palmitoyl-sphingomyelin (PSM) were studied in the presence of the fluid phospholipid palmitoyl-oleoyl-phosphatidylcholine (POPC) in membrane model systems. The use of two fluorescent membrane probes distinctly sensitive to lipid phases allowed a thorough biophysical characterization of the ternary system. In these mixtures, PCer recruits POPC and PSM in the fluid phase to form extremely ordered and compact gel domains. Gel domain formation by low PCer mol fraction (up to 12 mol %) is enhanced by physiological PSM levels (approximately 20-30 mol % total lipid). For higher PSM content, a three-phase situation, consisting of fluid (POPC-rich)/gel (PSM-rich)/gel (PCer-rich) coexistence, is clearly shown. To determine the fraction of each phase a quantitative method was developed. This allowed establishing the complete ternary phase diagram, which helps to predict PCer-rich gel domain formation and explains its enhancement through PSM/PCer interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号