首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to comparatively investigate the attachment capacities of Azospirillum brasilense Sp245 and its lipopolysaccharide-defective Omegon-Km mutants KM018 and KM252, as well as their activities with respect to the alteration of the morphology of wheat seedling root hairs. The adsorption dynamics of the parent Sp245 and mutant KM252 strains of azospirilla on the seedling roots of the soft spring wheat cv. Saratovskaya 29 were similar; however, the attachment capacity of the mutant KM252 was lower than that of the parent strain throughout the incubation period (15 min to 48 h). The mutation led to a considerable decrease in the hydrophobicity of the Azospirillum cell surface. The lipopolysaccharides extracted from the outer membrane of A. brasilense Sp245 and mutant cells with hot phenol and purified by chromatographic methods were found to induce the deformation of the wheat seedling root hairs, the lipopolysaccharide of the parent strain being the most active in this respect. The role of the carbohydrate moiety of lipopolysaccharides in the interaction of Azospirillum cells with plants is discussed.  相似文献   

2.
The rhizobacterium Azospirillum brasilense Sp245 swims, swarms (Swa+ phenotype) or, very rarely, migrates with the formation of granular macrocolonies (Gri+ phenotype). Our aims were (i) to identify Sp245 mutants that swarm faster than the parent strain or differ from it in the mode of spreading and (ii) to compare the mutants’ responses to wheat seedling exudates. In isotropic liquid media, the swimming speeds of all motile A. brasilense strains were not influenced by the exudates. However, the exudates significantly stimulated the swarming of Sp245. In several Sp245 mutants, the superswarming phenotype was insensitive to local colonial density and to the presence of wheat seedling exudates. An A. brasilense polar-flagellum-defective Gri+ mutant BK759.G gave rise to stable Swa++ derivatives with restored flagellum production. This transition was concurrent with plasmid rearrangements and was stimulated in the presence of wheat seedling exudates. The swarming rate of the Swa++ derivatives of BK759.G was affected by the local density of their colonies but not by the presence of the exudates.  相似文献   

3.
Summary Four field experiments were carried out with wheat or sorghum in different regions of Brazil. The aim was to study the establishment of inoculatedAzospirillum strains, marked with resistance to various antibiotics, in the rhizosphere and in roots. The levels of the various antibiotics were chosen according to the resistance of the indigenousAzospirillum population.Azospirillum brasilense strains Sp 107 and Sp 245 could be established in all three wheat experiments and predominated within theAzospirillum population in washed, and especially in surface sterilized, roots. Strains Sp 7 and Cd established poorly in wheat roots.Azospirillum lipoferum Sp S82 represented 72% of the root isolates from sorghum inoculated with this strain. This strain and naturalAzospirillum infection became concentrated in the upper parts of the root system. Improved methods for root surface sterilization in which the absence ofAzospirillum on the root surface was established by pre-incubating roots with paraffin-capped ends in NFb medium confirmed the establishment of inoculatedAzospirillum strains within sorghum roots in the field.  相似文献   

4.
Seven Azospirillum strains induced more deformation of root hairs of wheat than did strains of Rhizobium leguminosarum, Azotobacter chroococcum, or Escherichia coli. Azospirillum sp. strain Sp245 caused the most deformation. Strain Sp245 (isolated from surface sterile roots of wheat) and strain Sp7 (isolated from the rhizosphere of a forage grass) were compared with regard to their effects on root hair deformation, their attachment to roots, and their effects on the growth of four wheat cultivars. The amount of deformation caused by the two strains in the four cultivars increased in the following order: cv. Tobari, cv. Tonari, cv. BH1146, cv. Lagoa. Strain Sp245 attached to the roots of all cultivars in low numbers, and attachment did not increase with time (up to 48 h). Strain Sp7 attached in higher numbers, and attachment increased with time. Inoculation of the four cultivars of wheat had pronounced effects on root mass measured at maturity. The magnitude of the effects in the four cultivars increased in the following order: Tobari, Tonari, BH1146, Lagoa; these effects were progressively more positive for strain Sp245 and progressively more negative for strain Sp7. Concentrations of N in wheat did not vary substantially between cultivars or strains. Concentrations of K and P did not vary substantially between cultivars but did vary between strains, Sp245 effecting increases and Sp7 effecting decreases.  相似文献   

5.
Yegorenkova  I.V.  Konnova  S.A.  Sachuk  V.N.  Ignatov  V.V. 《Plant and Soil》2001,231(2):275-282
The dynamics of adsorption of the nitrogen-fixing soil bacteria Azospirillum brasilense 75 and 80 (isolated from soil samples collected in Saratov Oblast, southern Russia) and A. brasilense Sp245 to the roots of seedlings of common spring wheat was studied in relation to inoculum size, period of incubation with the roots and bacterial-growth phase. The number of root-attached cells increased with increasing size of inoculum and time of contact. The saturation of root-surface adsorption was observed by 24 h of co-incubation for A. brasilense 75, by 6 h for A. brasilense 80, and by 3 h for A. brasilense Sp245. The firmness of bacterial–root attachment increased after extended co-incubation. Differences in the adsorption kinetics of the azospirilla were found that were associated with bacterial-growth phases. Azospirilla attached to the roots of their host cultivar more actively than they did to the roots of a non-host cultivar. Adsorption was partially inhibited when the roots were treated with N-acetyl-D-glucosamine. Maximal inhibition occurred after a 3-h exposure of the roots to the bacteria. Root-hair deformation induced with polysaccharide-containing complexes from the Azospirillum capsular material was inhibited by N-acetyl-D-glucosamine and chitotriose, specific haptens of wheat germ agglutinin. A possible mechanism of the mutual influence of bacteria and plants may involve key roles of wheat germ agglutinin, present on the roots, and the polysaccharide-containing components of the Azospirillum capsule.  相似文献   

6.
The effect of cellulase and pectinase on bacterial colonization of wheat was studied by three different experiments. In the first experiment, the root colonization of 3 wheat cultivars (Ghods, Roshan and Omid) by two A. brasilense strains (Sp7 and Dol) was compared using pre-treated roots with cellulase and pectinase, and non-treated with these enzymes (control). Although the root colonization varied greatly among strain-plant combinations in controls, the pre-treatment of roots with polysaccharide degrading enzymes significantly increased the bacterial count in roots, regardless of the strain-plant combination. This might be an indication that cell wall may act as an important factor in plant-Azospirillum interaction. In the second experiment, the root cellulase activity of the same wheat cultivars treated with and without the two Azospirillum brasilense, strains (Sp7 and Dol) was compared. The pre-treatment of wheat roots with Azospirillum enhanced the cellulase activity of wheat root extracts. Thus, the cellulase activity might participate in the initial colonization of wheat roots by Azospirillum. The comparison of the cellulase activity of root extracts within inoculated and non-inoculated seedlings showed that the inoculation had enhanced the cellulase activity in root extracts, but this effect was directly dependent on the strain-plant combination. Strain Sp7 stimulated the highest cellulase activity in cv. Roshan, but strain Dol induced the highest enzyme activity in cv. Ghods. In the third experiment, several growth parameters of those 3 wheat cultivars treated with and without those two bacterial strains (Sp7 and Dol) were compared. The highest magnitude of growth responses caused by Sp7 strain was in the cv Roshan, but Dol strain stimulated the highest growth in cv Ghods. Therefore, effective colonization may contribute to more growth responses.  相似文献   

7.
Recent microscopic evidence acquired using strain-specific monoclonal antibodies and specific gene probes confirms earlier claims that some strains of Azospirillum lipoferum and A. brasilense, but not others, are capable of infecting the interior of wheat roots. The present study was performed to determine whether this strain specificity in the infection of the interior of wheat roots was apparent in the first 24 h of adsorption (`anchoring') of Azospirillum cells to the root surface. Strains of A. brasilense, originally isolated from surface-sterilised wheat roots (Sp 245, Sp 107) or with a proven ability to infect the interior of wheat roots (Sp 245), showed no greater ability to anchor to the roots than other Azospirillum strains isolated from the wheat rhizosphere (Sp 246) or from the rhizosphere or rhizosphere soil of other gramineae (Sp 7, Cd, S 82). The SEM images showed that at the root tip the Azospirillum cells were principally located in cracks between epidermal cells. In the root hair zone the bacteria were more numerous but again principally located in the depressions between epidermal cells. In all zones of the roots mucilage was present, and near the tip this appeared to have been partially digested, forming `halos' around the bacteria and revealing fibril-like strands attached to the bacteria. Subsequent studies were conducted using a technique originally developed for investigating competition of rhizobia for adsorption sites on legume roots. In the adaptation of this technique it was found that the presence of any significant concentration of Ca++ in the incubation medium reduced bacterial adsorption, as did concentrations of (PO4)3- above 50 mM. The influence of the pH of the incubation medium on the adsorption of ten different strains of Azospirillum showed, that with one exception, strains isolated from the roots or rhizosphere of wheat showed optimum adsorption at pH 6.0, and all other strains pH 7.0. Apart from this effect of pH no differences in adsorption were detected between strains with a proven capacity to infect wheat roots and those unable to do so. However, strains varied in their capability to compete for adsorption sites, there being a tendency for strains with a proven capacity to invade the internal tissues of wheat roots to be more competitive for adsorption sites.  相似文献   

8.
Summary Two experiments were performed to examine the effects of inoculation of field grown wheat with various Azospirillum strains. In the first experiment the soil was sterilized with methyl bromide to reduce the Azospirillum population and15N labelled fertilizer was added to all treatments. Two strains ofAzospirillum brasilense isolated from surface sterilized wheat roots and theA. brasilense type strain Sp7 all produced similar increases in grain yield and N content. From the15N and acetylene reduction data it was apparent that these increases were not due to N2 fixation. In the second experiment performed in the same (unsterilized) soil, twoA. brasilense strains (Sp245, Sp246) and oneA. amazonense strain (Am YTr), all isolated from wheat roots, produced responses of dry matter and N content while the response to the strain Sp7 was much smaller. These data confirm earlier results which indicate that if natural Azospirillum populations in the soil are high (the normal situation under Brazilian conditions), strains which are isolated from wheat roots are better able to produce inoculation responses than strains isolated from other sources. The inoculation of a nitrate reductase negative mutant of the strain Sp245 produced only a very small inoculation response in wheat. This suggests that the much greater inoculation response of the original strain was not due to N2 fixation but to an increased nitrate assimilation due to the nitrate reductase activity of the bacteria in the roots. Consultant Inter-American Institute for Cooperation in Agriculture IICA/EMBRAPA World Bank Project.  相似文献   

9.
Motility of the serologically different Azospirillum brasilense strains Sp245 (serogroup I) and Sp7 (serogroup II) was studied in the presence of antibodies to their lipopolysaccharides (LPS). A procedure was proposed in order to determine the motility patterns indicating the specificity of the interaction between the anti-LPS antibodies and bacteria. Analysis of the effect of such antibodies on motility of 25 strains (A. brasilense, A. lipoferum, A. irakense, and Azospirillum sp.) revealed bacteria exhibiting antigenic cross reactions with A. brasilense Sp7 or Sp245. The effect of anti-LPS antibodies on motility of azospirilla was in agreement with the results of immune agglutination analysis of bacterial cells and of immunodiffusion analysis of the LPS preparations. According to our results, strains Azospirillum sp. SR81 and A. brasilense SR14 should be included into serogroups I and II, respectively.  相似文献   

10.
The results of the cross reactions of the 27 strains of Azospirillum spp. with 4 fluorescent antibodies (FA) show a neat differentiation between the two species. A. lipoferum represents a more homogenous group in respect to FA reactions and highly fluorescent preparations were obtained with strains from a large scope origin against Sp59 FA, the type strain. In contrast A. brasilense contains at least three sub groups in respect to FA reactions. The first includes all denitrifing strains (nir+) which react with FA from Sp7 the type strain. None of the nir- strains reacted strongly with Sp7 FA. One part of the A. brasilense nir- group which includes the strains isolated from well sterilized rice and wheat roots (Sp 107, 107 st, 106 and 109 st) reacts with FA of their reference strain Sp107 but not with that of Sp28 FA. The strains isolated from unsterilized roots and soils reacted with SP28 FA and not with that of Sp107 FA. In addition there were 3 strains (Sp A4, 34 and 67) which reacted with neither of the FAs.Abbreviations Fa fluorescent antibody - FITC fluorescein isothiocyanate - Rh ITC gelatin-rhodamine isothiocyanate - nir+ nitrite reductase positive - nir- nitrite reductase negative  相似文献   

11.
Azospirillum brasilense cells deprived of capsular exopolysaccharides completely lost their ability to bind wheat germ agglutinin (WGA) and much of their ability to attach to wheat seedling roots. The decapsulation of bacterial cells by washing them with a NaCl solution led to an increase in the relative hydrophobicity of the cell surface. The pretreatment of wheat seedling roots with N-acetyl-D-glucosamine (GlcNAc) or the GlcNAc-containing polysaccharide complexes stripped from Azospirillum cells reduced their attachment to the roots. Under the experimental conditions used (3-h incubation of wheat seedling roots with exponential-phase azospirilla), bacterial adsorption is mainly driven by the specific mechanisms attachment of the cells to the roots, whose operation is due to the capsular polysaccharide components and the WGA present on the wheat seedling roots.  相似文献   

12.
The lipopolysaccharides (LPSs) extracted from the outer membrane of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252 with a hot aqueous solution of phenol were found to differ in the content of carbohydrates, glucosamine, and total phosphorus and in the proportion of octadecenoic and hexadecanoic acids in the lipid moieties of the LPSs. The carbohydrate moieties of the LPSs were heterogeneous in charge. The analysis of the O-specific polysaccharides (O-PSs) of the mutants KM018 and KM252 by gas-liquid chromatography, IR spectroscopy, and NMR spectroscopy showed that they are composed of the same linear pentasugar repeating units-->2)-beta-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)- alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->as the O-PSs of the parent strain Sp245. The reported differences in the biological activity of the LPSs of the parent and mutant strains can be due to their different chemical structure.  相似文献   

13.
The lipopolysaccharides (LPSs) extracted from the outer membrane of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252 with a hot aqueous solution of phenol were found to differ in the content of carbohydrates, glucosamine, and total phosphorus and in the proportion of octadecenoic and hexadecanoic acids in the lipid moieties of the LPSs. The carbohydrate moieties of the LPSs were heterogeneous in charge. The analysis of the O-specific polysaccharides (O-PSs) of the mutants KM018 and KM252 by gas–liquid chromatography, IR spectroscopy, and NMR spectroscopy showed that they are composed of the same linear pentasugar repeating units 2)--D-Rhap-(1 3)--D-Rhap-(1 3)--D-Rhap-(1 2)--D-Rhap-(1 2)--D-Rhap-(1 as the O-PSs of the parent strain Sp245. The reported differences in the biological activity of the LPSs of the parent and mutant strains can be due to their different chemical composition.  相似文献   

14.
The structural identity of the repeated unit in O-specific polysaccharides (OPSs) present in the outer membrane of strain SR75 of the bacterium Azospirillum brasilense, isolated from wheat rhizosphere in Saratov oblast, and the previously studied OPSs of A. brasilense strain Sp245, isolated from surfacesterilized wheat roots in Brazil, has been demonstrated. Plasmid profiles, DNA restriction, and hybridization assays suggested that A. brasilense strains SR75 and Sp245 have different genomic structures. It was shown that homologous lps loci of both strains were localized in their plasmid DNA. This fact allows us to state that, despite their different origin, the development of the strains studied was convergent. Presumably, the habitation of these bacteria in similar ecological niches influenced this process in many respects. __________ Translated from Mikrobiologiya, Vol. 74, No. 5, 2005, pp. 626–632. Original Russian Text Copyright ? 2005 by Fedonenko, Borisov, O. Konnova, Zdorovenko, Katsy, S. Konnova, Ignatov.  相似文献   

15.
Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth‐promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress‐related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col‐0 and aba2‐1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro‐grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild‐type Col‐0 and on the mutant aba2‐1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col‐0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.  相似文献   

16.
The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism.  相似文献   

17.
The transformation of sodium arsenite and sodium arsenate by the rhizospheric nitrogen-fixing bacterium Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L. ‘Saratovskaya 29’) was studied. The effect produced by the A. brasilense strain on the morphological parameters of wheat in an As-polluted environment was examined. The plants were cultivated in a hydroponic system, with glass beads serving as a support for root growth. The plant-growth medium (an artificial soil solution) was deficient in P and Fe. The total initial As concentrations used were 75, 750, and 7500 μg l−1. The As compounds used contained sodium arsenate and sodium arsenite at an As(V):As(III) ratio of 1:3.6 (in terms of As) in all experiments. Inoculation of A. brasilense Sp245 led to a decrease in the overall root length and to the formation of lateral roots; both effects are possibly related to the bacteria’s ability to synthesize auxins. Inoculation also changed the As(V): As(III) ratio of the plant-growth medium. In all experiments, the concentration of As(V) in the nutrient medium increased relative to the initial one and was approximately 1.5-fold higher than that in the medium of uninoculated plants. This value slightly decreased (1.6 > 1.5 > 1.4) with increasing concentration of As in the medium. Azospirillum-inoculated plants accumulated less As than did the surface-sterilized uninoculated plants. This study shows that A. brasilense Sp245 in association with wheat changes the speciation, bioavailability, and plant uptake of As.  相似文献   

18.
The initial stages of colonization of wheat roots by cells ofAzospirillum brasilense strains 75 and 80 isolated from soils of the Saratov oblast were studied. The adsorption of azospirilla on root hairs of soft spring wheats rapidly increased in the first hours of incubation, going then to a plateau phase. Within the first 15 h of incubation, exponential-phase cells were adsorbed more intensively than stationary-phase cells. Conversely, stationary-phase cells were adsorbed more intensively than exponential-phase cells, if the period of azospirilla incubation with the wheat roots was extended. As the time of incubation increased, the attachment of azospirilla to the wheat roots became stronger. The effect of cell attachment to root hairs was strain-dependent; the number of adsorbed cells of a given strain of azospirilla was greater in the case of host wheat cultivars. The deformation of wheat root hairs was affected by the polysaccharide-containing complexes isolated from the capsular material of azospirilla. The suggestion is made that common receptor systems are involved in the adsorption of azospirilla on roots and in root hair deformation  相似文献   

19.
The agronomic impact of genetically tagged azospirilla (Azospirillum brasilense)was assessed in open field and their fluctuation were monitored in the soil/rhizosphere. Strain performance, upon inoculation of sorghum, was evaluated over a two-years period; agronomic treatments included nitrogen application (0, 80, 160 kg ha–1), and types of inoculant (Sp245 lacZ, Sp6 gusA, Sp6 IAA++ gusA). Grain yield was higher for inoculated seed plots than in non-inoculated ones, whereas nitrogen content, biomass of plant residues and nitrogen in plant residues gave values that were not statistically different. Root length density (RLD) of sorghum at the end of the stem elongation stage was affected only by the indole-3-acetic acid (IAA) overproducer Azospirillum strain (A. brasilense Sp6 IAA++ gusA) with respect to the normal IAA producer (A. brasilense Sp6 gusA), being higher in the first 40 cm of depth, notwithstanding the level of nitrogen fertilization. The traceability of the released genetically modified strains enabled to monitor their ability to colonise soil and roots. Moreover, the genetic modification per se vs. the non-modified counterpart, did not affect the culturable aerobic population in soil, microfungi, streptomycetes, fluorescent pseudomonads, soil microbial biomass, or some microbial activities, all selected as important indicators.  相似文献   

20.
Lectins were extracted from the surface of nitrogen-fixing soil bacteria Azospirillum brasilense Sp7 and from its mutant A. brasilense Sp7.2.3 defective in lectin activity. The ability of lectins to stimulate the rapid formation of hydrogen peroxide related to increase of oxalate oxidase and peroxidase activity in the roots of wheat seedlings has been demonstrated. The most rapid induced pathway of hydrogen peroxide formation in the roots of wheat seedlings was the oxalic acid oxidation by oxalate oxidase which is the effect of lectin in under 10 min in a concentration of 10 μg/ml. The obtained results show that lectins from Azospirillum are capable of inducing the adaptation processes in the roots of wheat seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号