首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Rebecchi  A Peterson  S McLaughlin 《Biochemistry》1992,31(51):12742-12747
We studied the binding of phosphoinositide-specific phospholipase C-delta 1 (PLC-delta) to vesicles containing the negatively charged phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). PLC-delta did not bind significantly to large unilamellar vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but bound strongly to vesicles formed from mixtures of PC and PIP2. The apparent association constant for the putative 1:1 complex formed between PLC-delta and PIP2 was Ka congruent to 10(5) M-1. The binding strength increased further (Ka congruent to 10(6) M-1) when the vesicles also contained 30% PS. High-affinity binding of PLC-delta to PIP2 did not require Ca2+. PLC-delta bound only weakly to vesicles formed from mixtures of PC and either PS or phosphatidylinositol (PI); binding increased as the mole fraction of acidic lipid in the vesicles increased. We also studied the membrane binding of a small basic peptide that corresponds to a conserved region of PLC. Like PLC-delta, the peptide bound weakly to vesicles containing monovalent negatively charged lipids; unlike PLC-delta, it did not bind strongly to vesicles containing PIP2. Our data suggest that a significant fraction of the PLC-delta in a cell could be bound to PIP2 on the cytoplasmic surface of the plasma membrane.  相似文献   

2.
M Mosior  S McLaughlin 《Biochemistry》1992,31(6):1767-1773
We studied the binding of peptides containing five basic residues to membranes containing acidic lipids. The peptides have five arginine or lysine residues and zero, one, or two alanines between the basic groups. The vesicles were formed from mixtures of a zwitterionic lipid, phosphatidylcholine, and an acidic lipid, either phosphatidylserine or phosphatidylglycerol. Measuring the binding using equilibrium dialysis, ultrafiltration, and electrophoretic mobility techniques, we found that all peptides bind to the membranes with a sigmoidal dependence on the mole fraction of acidic lipid. The sigmoidal dependence (Hill coefficient greater than 1 or apparent cooperativity) is due to both electrostatics and reduction of dimensionality and can be described by a simple model that combines Gouy-Chapman-Stern theory with mass action formalism. The adjustable parameter in this model is the microscopic association constant k between a basic residue and an acidic lipid (1 less than k less than 10 M-1). The addition of alanine residues decreases the affinity of the peptides for the membranes; two alanines inserted between the basic residues reduces k 2-fold. Equivalently, the affinity of the peptide for the membrane decreases 10-fold, probably due to a combination of local electrostatic effects and the increased loss of entropy that may occur when the more massive alanine-containing peptides bind to the membrane. The arginine peptides bind more strongly than the lysine peptides: k for an arginine residue is 2-fold higher than for a lysine residue. Our results imply that a cluster of arginine and lysine residues with interspersed electrically neutral amino acids can bind a significant fraction of a cytoplasmic protein to the plasma membrane if the cluster contains more than five basic residues.  相似文献   

3.
We have studied the binding of peptides containing both basic and aromatic residues to phospholipid vesicles. The peptides caveolin(92-101) and MARCKS(151-175) both contain five aromatic residues, but have 3 and 13 positive charges, respectively. Our results show the aromatic residues insert into the bilayer and anchor the peptides weakly to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC). Incorporation of a monovalent acidic lipid (e.g., phosphatidylserine, PS) into the vesicles enhances the binding of both peptides via nonspecific electrostatic interactions. As predicted from application of the Poisson-Boltzmann equation to atomic models of the peptide and membranes, the enhancement is larger (e.g., 10(4)- vs 10-fold for 17% PS) for the more basic MARCKS(151-175). Replacing the five Phe with five Ala residues in MARCKS(151-175) decreases the binding to 10:1 PC/PS vesicles only slightly (6-fold). This result is also consistent with the predictions of our theoretical model: the loss of the attractive hydrophobic energy is partially compensated by a decrease in the repulsive Born/desolvation energy as the peptide moves away from the membrane surface. Incorporating multivalent phosphatidylinositol 4, 5-bisphosphate (PIP(2)) into PC vesicles produces dramatically different effects on the membrane binding of the two peptides: 1% PIP(2) enhances caveolin(92-101) binding only 3-fold, but increases MARCKS(151-175) binding 10(4)-fold. The strong interaction between the effector region of MARCKS and PIP(2) has interesting implications for the cellular function of MARCKS.  相似文献   

4.
The cytoplasmic form of protein kinase C (PKC) is inactive, probably because the pseudosubstrate region in its regulatory domain blocks the substrate-binding site in its kinase domain. Calcium ions cause a translocation to the membrane: maximum activation requires a negative lipid such as phosphatidylserine (PS) and the neutral lipid diacylglycerol (DAG) but the mechanism by which PS and DAG activate PKC is unknown. Pseudosubstrate region 19-36 of PKC-beta has six basic and one acidic amino acids and region 19-29 has five basic and no acidic amino acids. Since any binding of basic residues in the pseudosubstrate region to acidic lipids in the membrane should stabilize the active form of PKC, we studied how peptides with amino acids equivalent to residues 19-36 and 19-29 of PKC-beta bound to phospholipid vesicles. We made equilibrium dialysis, filtration, and electrophoretic mobility measurements. The fraction of bound peptide is a steep sigmoidal function of the mol fraction of negative lipid in the membrane, as predicted from a simple theoretical model that assumes the basic residues provide identical independent binding sites. The proportionality constant between the number of bound peptides/area and the concentration of peptide in the bulk aqueous phase is 1 micron for a membrane with 25% negative lipid formed in 0.1 M KCl. Equivalently, the association constant of the peptide with the membrane is 10(4) M-1, or the net binding energy is 6 kcal/mol. Thus the interaction of basic residues in the pseudosubstrate region with acidic lipids in the membrane could provide 6 kcal/mol free energy towards stabilizing the active form of PKC.  相似文献   

5.
Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.  相似文献   

6.
Petan T  Krizaj I  Gelb MH  Pungercar J 《Biochemistry》2005,44(37):12535-12545
The enzymatic activity of ammodytoxins (Atxs), secreted phospholipases A(2) (sPLA(2)s) in snake venom, is essential for expression of their presynaptic neurotoxicity, but its exact role in the process is unknown. We have analyzed in detail the enzymatic properties of Atxs, their mutants, and homologues. The apparent rates of phospholipid hydrolysis by the sPLA(2)s tested vary by up to 4 orders of magnitude, and all enzymes display a strong preference for vesicles containing anionic phospholipids, phosphatidylglycerol or phosphatidylserine (PS), over those containing zwitterionic phosphatidylcholine (PC). Nevertheless, Atxs are quite efficient in hydrolyzing pure PC vesicles as well as PC-rich plasma membranes of intact HEK293 cells. The presence of anionic phospholipids in PC vesicles dramatically increases the interfacial binding affinity and catalytic activity of Atxs, but not of their nontoxic homologue ammodytin I(2), that displays unusually low binding affinity and enzymatic activity on PS-containing vesicles and HEK293 plasma membranes. Aromatic and hydrophobic residues on the interfacial binding surface of Atxs are important for productive binding to both zwitterionic and anionic vesicles, while basic and polar residues have a negative impact on binding to zwitterionic vesicles. When tightly bound to the membrane interface, Atxs can reach full enzymatic activity at low micromolar concentrations of Ca(2+). Although Atxs have evolved to function as potent neurotoxins that specifically target presynaptic nerve terminals, they display a high degree of phospholipolytic efficiency on various phospholipid membranes.  相似文献   

7.
Papo N  Shai Y 《Biochemistry》2004,43(21):6393-6403
The amphipathic alpha-helix is a common motif found in many cell lytic peptides including antimicrobial peptides. We have recently shown that significantly altering the amphipathic structure of a lytic peptide by reshuffling its sequence and/or replacing a few l-amino acids with their D-enantiomers did not significantly affect the antimicrobial activity of the peptides nor their ability to bind and permeate negatively charged (PE/PG) membranes. However, a pronounced effect was observed regarding their hemolytic activity and their ability to bind and permeate zwitterionic (PC/Cho) membranes. To shed light on these findings, here we used surface plasmon resonance (SPR) with mono- and bilayer membranes. We found that the L-amino acid (aa) peptides bound 10-25-fold stronger to PC/Cho bilayers compared with monolayers, whereas the diastereomers bound similarly to both membranes. A two-state reaction model analysis of the data indicated that this difference is due to the insertion of the L-aa peptides into the PC/Cho bilayers, whereas the diastereomers are surface-localized. In contrast, only an approximately 2-fold difference was found with negatively charged membranes. Changes in the amphipathicity markedly affected only the insertion of the L-aa peptides into PC/Cho bilayers. Furthermore, whereas the all-L-aa peptides bound similarly to the PC/Cho and PE/PG membranes, the diastereomers bound approximately 100-fold better to PE/PG compared with PC/Cho membranes, and selectivity was determined only in the first binding step. The effect of the peptides on the lipid order determined by using ATR-FTIR studies supported these findings. Besides shedding light on the mode of action of these peptides, the present study demonstrates SPR as a powerful tool to differentiate between non-cell-selective compared with bacteria-selective peptides, based on differences in their membrane binding behavior.  相似文献   

8.
Clayton JC  Hughes E  Middleton DA 《Biochemistry》2005,44(51):17016-17026
Phospholamban (PLB) and phospholemman (PLM, also called FXYD1) are small transmembrane proteins that interact with P-type ATPases and regulate ion transport in cardiac cells and other tissues. This work has investigated the hypothesis that the cytoplasmic domains of PLB and PLM, when not interacting with their regulatory targets, are stabilized through associations with the surface of the phospholipid membrane. Peptides representing the 35 C-terminal cytoplasmic residues of PLM (PLM(37-72)), the 23 N-terminal cytoplasmic residues of PLB (PLB(1-23)), and the same sequence phosphorylated at Ser-16 (P-PLB(1-23)) were synthesized to examine their interactions with model membranes composed of zwitterionic phosphatidylcholine (PC) lipids alone or in admixture with anionic phosphatidylglycerol (PG) lipids. Wide-line 2H NMR spectra of PC/PG membranes, with PC deuterated in the choline moiety, indicated that all three peptides interacted with the membrane surface and perturbed the orientation of the choline headgroups. Fluorescence and 31P magic-angle spinning (MAS) NMR measurements indicated that PLB(1-23) and P-PLB(1-23) had a higher affinity for PC/PG membranes, which carry an overall negative surface charge, than for PC membranes, which have no net surface charge. The 31P MAS NMR spectra of the PC/PG membranes in the presence of PLM(37-72), PLB(1-23), and P-PLB(1-23) indicated that all three peptides induced clustering of the lipids into PC-enriched and PG-enriched regions. These findings support the theory that the cytoplasmic domains of PLB and PLM are stabilized by interacting with lipid headgroups at the membrane surface, and it is speculated that such interactions may modulate the functional properties of biological membranes.  相似文献   

9.
The interaction of heptalysine with vesicles formed from mixtures of the acidic lipid phosphatidylserine (PS) and the zwitterionic lipid phosphatidylcholine (PC) was examined experimentally and theoretically. Three types of experiments showed that smeared charge theories (e.g., Gouy-Chapman-Stern) underestimate the membrane association when the peptide concentration is high. First, the zeta potential of PC/PS vesicles in 100 mM KCl solution increased more rapidly with heptalysine concentration (14.5 mV per decade) than predicted by a smeared charge theory (6.0 mV per decade). Second, changing the net surface charge density of vesicles by the same amount in two distinct ways produced dramatically different effects: the molar partition coefficient decreased 1000-fold when the mole percentage of PS was decreased from 17% to 4%, but decreased only 10-fold when the peptide concentration was increased to 1 microM. Third, high concentrations of basic peptides reversed the charge on PS and PC/PS vesicles. Calculations based on finite difference solutions to the Poisson-Boltzmann equation applied to atomic models of heptalysine and PC/PS membranes provide a molecular explanation for the observations: a peptide adsorbing to the membrane in the presence of other surface-adsorbed peptides senses a local potential more negative than the average potential. The biological implications of these "discreteness-of-charge" effects are discussed.  相似文献   

10.
The secreted phospholipase A(2) from bee venom (bvPLA(2)) contains a membrane binding surface composed mainly of hydrophobic residues and two basic residues that come in close contact with the membrane. Previous studies have shown that the mutant in which these two basic residues (K14 and R23) as well as three other nearby basic residues were collectively changed to glutamate (charge reversal), like wild-type enzyme, binds with high affinity to anionic phospholipid vesicles. In the present study, we have measured the equilibrium constants for the interaction of wild-type bvPLA(2), the charge-reversal mutant (bvPLA(2)-E5), and the mutant in which the five basic residues were changed to neutral glutamine (bvPLA(2)-Q5) with phosphatidylcholine (PC) vesicles containing various amounts of the anionic phosphatidylserine (PS). Remarkably, bvPLA(2)-E5 with an anionic membrane binding surface binds more tightly to vesicles as the mole percent of PS is increased. Computational studies predict that this is due to a significant upward shift in the pK(a) of E14 (and to some extent E23) when the enzyme binds to PC/PS vesicles such that the carboxylate of the glutamate side chain near the membrane surface undergoes protonation. The experimental pH dependence of vesicle binding supports this prediction. bvPLA(2)-E5 binds more weakly to PS/PC vesicles than does wild-type enzyme due to electrostatic protein-vesicle repulsion coupled with the similar energetics of desolvation of basic residues and glutamates that accompanies enzyme-vesicle contact. Studies with bvPLA(2)-Q5 show that only a small fraction of the total bvPLA(2) interfacial binding energy ( approximately 10%) is due to electrostatics.  相似文献   

11.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

12.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

13.
The clathrin-induced fusion of liposome membranes, the membrane binding of clathrin, and the conformational states of clathrin were investigated over a wide pH range using large unilamellar and multilamellar vesicles composed of phosphatidylserine (PS), phosphatidylcholine (PC), PS/PC (2:1), PS/PC (1:1), or PS/PC (1:2). The pH profiles of clathrin-induced fusion of all types of liposomes containing PS showed biphasic patterns. Their pH thresholds were found in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH profiles of clathrin binding to these vesicles, but the pH profiles of binding were different from the biphasic fusion patterns. With PC vesicles, only small degrees of fusion and clathrin binding were observed at pH 2-4. The pH dependences of the conformation and hydrophobicity of clathrin were determined by measuring the extent of the blue shift of the fluorescence maximum of 1-anilinonaphthalene-8-sulfonate in the presence of the protein, the fluorescence intensity of N-(1-anilinonaphthyl-4)maleimide bound to the clathrin molecule, the resonance energy transfer from its tryptophan to anilinonaphthyl residues, the partitioning of the protein in Triton X-114 solution, and the hydrophobicity index of clathrin using cis-parinaric acid. These measurements indicated that conformational change and exposure of hydrophobic regions occur below pH 6 and suggested that clathrin may adopt different conformational states in the pH region where it induced membrane fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Several biologically important peripheral (e.g., myristoylated alanine-rich C kinase substrate) and integral (e.g., the epidermal growth factor receptor) membrane proteins contain clusters of basic residues that interact with acidic lipids in the plasma membrane. Previous measurements demonstrate that the polyvalent acidic lipid phosphatidylinositol 4,5-bisphosphate is bound electrostatically (i.e., sequestered) by membrane-adsorbed basic peptides corresponding to these clusters. We report here three experimental observations that suggest monovalent acidic lipids are not sequestered by membrane-bound basic peptides. 1), Binding of basic peptides to vesicles does not decrease when the temperature is lowered below the fluid-to-gel phase transition. 2), The binding energy of Lys-13 to lipid vesicles increases linearly with the fraction of monovalent acidic lipids. 3), Binding of basic peptides to vesicles produces no self-quenching of fluorescent monovalent acidic lipids. One potential explanation for these results is that membrane-bound basic peptides diffuse too rapidly for the monovalent lipids to be sequestered. Indeed, our fluorescence correlation spectroscopy measurements show basic peptides bound to phosphatidylcholine/phosphatidylserine membranes have a diffusion coefficient approximately twofold higher than that of lipids, and those bound to phosphatidylcholine/phosphatidylinositol 4,5-bisphosphate membranes have a diffusion coefficient comparable to that of lipids.  相似文献   

15.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

16.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

17.
The abilities of normal and three abnormal factor IXa molecules to activate factor X and to bind to phospholipid membranes have been compared to define the contributions of protein-lipid interactions and factor IXa light chain-heavy chain interactions to the functioning of this protein. The abnormal proteins studied had altered amino acid residues in their light chains. The heavy-chain regions, containing the active site serine and histidine residues, were normal in the abnormal proteins on the basis of titration by antithrombin III. The binding constants (Kd) for normal (N), variant [Chapel Hill (CH) and Alabama (AL)], and gamma-carboxyglutamic acid (Gla) modified (MOD) factors IX and IXa to phosphatidylserine (PS)/phosphatidylcholine (PC) small, unilamellar vesicles (SUV) were measured by 90 degrees light scattering. The Kd values for factor IXN binding were quite sensitive to the PS content of the membrane but less sensitive to Ca2+ concentrations between 0.5 and 10 mM. The zymogen and activated forms of both normal and abnormal factor IX bound with similar affinities to PS/PC (30/70) SUV. In the cases of factor IXaN and factor IXaAL, but not factor IXaCH or factor IXaMOD, irreversible changes in scattering intensity suggested protein-induced vesicle fusion. Since the activation peptide is not released from factor IXaCH, the normal interaction of factor IXa with a membrane must require the release of the activation peptide and the presence of intact Gla residues. The rate of factor X activation by normal and abnormal factor IXa was obtained by using a chromogenic substrate for factor Xa in the presence of PS/PC (30/70) SUV and 5 mM Ca2+.  相似文献   

18.
Experiments directed to measure the interaction of lysozyme with liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) have been conducted by monitoring both protein and lipid fluorescence and fluorescence anisotropy of the protein. The binding of lysozyme to the unilamellar vesicles was quantified using a novel method of analysis in which the fractional contribution at moderate binding conditions is determined from either total fluorescence decay or anisotropy decay curves of tryptophan at limiting binding conditions. In the energy transfer experiments PC and PS lipids labelled with two pyrene acyl chains served as energy acceptors of the excited tryptophan residues in lysozyme. The binding was strongly dependent on the molar fraction of negatively charged PS in neutral PC membranes and on the ionic strength. Changes in the tryptophan fluorescence decay characteristics were found to be connected with long correlation times, indicating conformational rearrangements induced by binding of the protein to these lipid membranes. The dynamics of membrane bound protein appeared to be dependent on the physical state of the membrane. Independent of protein fluorescence studies, formation of a protein-membrane complex can also be observed from the lipid properties of the system. The interaction of lysozyme with di-pyrenyl-labelled phosphatidylserine in anionic PS/PC membranes resulted in a substantial decrease of the intramolecular excimer formation, while the excimer formation of dipyrenyl-labelled phosphatidylcholine in neutral PC membranes barely changed in the presence of lysozyme.Abbreviations dipyr4 sn-1,2-(pyrenylbutyl) - dipyr10 sn-1,2-(pyrenyldecanoyl). - DMPC dimyristoyl-phosphatidylcholine - DOPC dioleoyl-phosphatidylcholine - DPPC dipalmitoyl-phosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - PC phosphatidylcholine - PS phosphatidylserine Correspondence to: A. J. W. G. Visser  相似文献   

19.
A peptide corresponding to the basic (+13), unstructured effector domain of myristoylated alanine-rich C kinase substrate (MARCKS) binds strongly to membranes containing phosphatidylinositol 4,5-bisphosphate (PIP(2)). Although aromatic residues contribute to the binding, three experiments suggest the binding is driven mainly by nonspecific local electrostatic interactions. First, peptides with 13 basic residues, Lys-13 and Arg-13, bind to PIP(2)-containing vesicles with the same high affinity as the effector domain peptide. Second, removing basic residues from the effector domain peptide reduces the binding energy by an amount that correlates with the number of charges removed. Third, peptides corresponding to a basic region in GAP43 and MARCKS effector domain-like regions in other proteins (e.g. MacMARCKS, adducin, Drosophila A kinase anchor protein 200, and N-methyl-d-aspartate receptor) also bind with an energy that correlates with the number of basic residues. Kinetic measurements suggest the effector domain binds to several PIP(2). Theoretical calculations show the effector domain produces a local positive potential, even when bound to a bilayer with 33% monovalent acidic lipids, and should thus sequester PIP(2) laterally. This electrostatic sequestration was observed experimentally using a phospholipase C assay. Our results are consistent with the hypothesis that MARCKS could reversibly sequester much of the PIP(2) in the plasma membrane.  相似文献   

20.
Chen L  Pielak GJ  Thompson NL 《Biochemistry》1999,38(7):2102-2109
The cytoplasmic regions of the mouse low-affinity Fc gamma RII isoforms, Fc gamma RIIb1 and Fc gamma RIIb2, play key roles in signal transduction by mediating different cellular functions. The Fc gamma RIIb1 (94 residues) and Fc gamma RIIb2 (47 residues) cytoplasmic regions are generated by differential mRNA splicing in which a single aspartic acid residue in Fc gamma RIIb2 is replaced by a 48-residue insert in Fc gamma RIIb1. In previous work, quantities of the mFc gamma RIIb1 and mFc gamma RIIb2 cytoplasmic regions were generated, and their secondary structures were examined in different solutions with circular dichroism [Chen, L., Thompson, N. L., and Pielak, G. J. (1997) Protein Sci. 6, 1038-1046]. In the work described here, steady-state light scattering was used to investigate possible interactions of the two isolated cytoplasmic regions with phospholipid vesicles. Three phospholipid compositions were examined: phosphatidylserine/phosphatidylcholine (PS/PC) (25/75, mol/mol); phosphatidylinositol bisphosphate/phosphatidylcholine (PIP2/PC) (25/75, mol/mol); and pure phosphatidylcholine (PC). Binding was examined in the presence and absence of Ca2+. The mFc gamma RIIb1 cytoplasmic peptide binds PS/PC vesicles weakly in the absence of Ca2+ and more strongly in the presence of Ca2+. For PIP2/PC vesicles, the behavior is reversed; binding is weak in the presence of Ca2+ and stronger in its absence. The mFc gamma RIIb1 peptide also weakly binds pure PC vesicles, in a Ca2+-independent manner. The mFc gamma RIIb2 cytoplasmic peptide does not bind, in the presence or absence of Ca2+, to PS/PC, PIP2/PC, or PC vesicles. The implications of these results for the mechanisms of signal transduction mediated by the two mFc gamma RII cytoplasmic regions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号