首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thirteen Rhizobium leguminosarum strains previously reported as H2-uptake hydrogenase positive (Hup+) or negative (Hup) were analyzed for the presence and conservation of DNA sequences homologous to cloned Bradyrhizobium japonicum hup-specific DNA from cosmid pHU1 (M. A. Cantrell, R. A. Haugland, and H. J. Evans, Proc. Natl. Acad. Sci. USA 80:181-185, 1983). The Hup phenotype of these strains was reexamined by determining hydrogenase activity induced in bacteroids from pea nodules. Five strains, including H2 oxidation-ATP synthesis-coupled and -uncoupled strains, induced significant rates of H2-uptake hydrogenase activity and contained DNA sequences homologous to three probe DNA fragments (5.9-kilobase [kb] HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) from pHU1. The pattern of genomic DNA HindIII and EcoRI fragments with significant homology to each of the three probes was identical in all five strains regardless of the H2-dependent ATP generation trait. The restriction fragments containing the homology totalled about 22 kb of DNA common to the five strains. In all instances the putative hup sequences were located on a plasmid that also contained nif genes. The molecular sizes of the identified hup-sym plasmids ranged between 184 and 212 megadaltons. No common DNA sequences homologous to B. japonicum hup DNA were found in genomic DNA from any of the eight remaining strains showing no significant hydrogenase activity in pea bacteroids. These results suggest that the identified DNA region contains genes essential for hydrogenase activity in R. leguminosarum and that its organization is highly conserved within Hup+ strains in this symbiotic species.  相似文献   

2.
3.
4.
Strains of the same bacterial species often show considerable genomic variation. To examine the extent of such variation in Rhizobium etli, the complete genome sequence of R. etli CIAT652 and the partial genomic sequences of six additional R. etli strains having different geographical origins were determined. The sequences were compared with each other and with the previously reported genome sequence of R. etli CFN42. DNA sequences common to all strains constituted the greater part of these genomes and were localized in both the chromosome and large plasmids. About 700 to 1,000 kb of DNA that did not match sequences of the complete genomes of strains CIAT652 and CFN42 was unique to each R. etli strain. These sequences were distributed throughout the chromosome as individual genes or chromosomal islands and in plasmids, and they encoded accessory functions, such as transport of sugars and amino acids, or secondary metabolism; they also included mobile elements and hypothetical genes. Sequences corresponding to symbiotic plasmids showed high levels of nucleotide identity (about 98 to 99%), whereas chromosomal sequences and the sequences with matches to other plasmids showed lower levels of identity (on average, about 90 to 95%). We concluded that R. etli has a pangenomic structure with a core genome composed of both chromosomal and plasmid sequences, including a highly conserved symbiotic plasmid, despite the overall genomic divergence.It is becoming clear that bacterial genomes of strains of the same species vary widely both in size and in gene composition (39). An unexpected degree of genomic diversity has been found by comparing whole genomes (39). For instance, in Escherichia coli strains, differences of up to 1,400 kb account for some strain-specific pathogenic traits (5, 56). The extent of intraspecies genome diversity varies in different bacterial lineages. Some species have a wide range of variation; these species include E. coli (42), Streptococcus agalactiae (53), and Haloquadratum walsbyi (34). Other bacteria display only limited gene content diversity; an example is Ureaplasma urealyticum (1, 54). Tettelin and colleagues have suggested that bacterial species can be characterized by the presence of a pangenome consisting of a core genome containing genes present in all strains and a dispensable genome consisting of partially shared and strain-specific genes (53, 54). This concept is rooted in the earlier ideas of Reanney (43) and Campbell (7) concerning the structure of bacterial populations, and it indicates both that there is a pool of accessory genetic information in bacterial species and that strains of the same or even different species can obtain this information by horizontal transfer mechanisms (7, 43).Genome size and diversity are related to bacterial lifestyle. Small genomes are typical of strict pathogens such as Rickettsia prowazekii (2) and endosymbionts such as Buchnera aphidicola (44a). In contrast, free-living bacteria, such as Pseudomonas syringae and Streptomyces coelicolor, have large genomes (4, 6). The bacteria with the largest genomes are common inhabitants of heterogeneous environments, such as soil, where energy sources are limited but diverse (32). An increase in genome size is attributable mainly to expansion of functions such as secondary metabolism, transport of metabolites, and gene regulation. All these features are common to the nitrogen-fixing symbiotic bacteria of legumes, which are collectively known as rhizobia, and their close relative the plant pathogen Agrobacterium. The genomes of such bacterial species have diverse architectures with circular chromosomes that are different sizes or linear chromosomes, like that in Agrobacterium species, and the organisms contain variable numbers of large plasmids (31, 49). Comparative genomic studies have highlighted the conservation of gene content and order among the chromosomes of some species of rhizobia (22, 23, 25, 40). Furthermore, Guerrero and colleagues (25) observed that most essential genes occur in syntenic arrangements and display a higher level of sequence identity than nonsyntenic genes. In contrast, plasmids, including symbiotic plasmids and symbiotic chromosomal islands (like those in Mesorhizobium loti and Bradyrhizobium japonicum) are poorly conserved in terms of both gene content and gene order (21). It is not clear what evolutionary advantage, if any, is provided by multipartite genomes, but some authors have speculated that such genomes may allow further accumulation of genes independent of the chromosome. Recently, Slater and coworkers (46) proposed a model for the origin of secondary chromosomes. Their idea is based on the notion of intragenomic gene transfers that might occur from primary chromosomes to ancestral plasmids of the repABC type. Observations of conservation of clusters of genes in secondary chromosomes or in large plasmids that retain synteny with respect to the main chromosome support this hypothesis (46).We have been studying Rhizobium etli as a multipartite genome model species (23). This organism is a free-living soil bacterium that is able to form nodules and fix nitrogen in the roots of bean plants. The genome of R. etli is partitioned into several replicons, a circular chromosome, and several large plasmids. In the reference strain R. etli CFN42, the genome is composed of a circular chromosome consisting of about 4,381 kb and 6 large plasmids whose total size is 2,148 kb (23). A 371-kb plasmid, termed pSym or the symbiotic plasmid, contains most of the genes required for symbiosis (21). Previous studies have described the high level of genetic diversity among geographically different R. etli isolates (41). The strains are also variable with respect to the number and size of plasmids. Nevertheless, there has been no direct measurement of diversity at the genomic level, nor have comparative studies of shared and particular genomic features of R. etli strains been reported. Therefore, to assess the degrees of genomic difference and genomic similarity in R. etli, we obtained the complete genomic sequence of an additional R. etli strain and partial genomic sequences of six other R. etli strains isolated worldwide. Our results support the concept of a pangenomic structure at the multireplicon level and show that a highly conserved symbiotic plasmid is present in divergent R. etli isolates.  相似文献   

5.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

6.
Thirty-one cultures of Rhizobium leguminosarum were screened for effectiveness (C2H2 reduction) on lentils (Lens esculenta). Fluorescent antibodies prepared against three of the most effective strains (Hawaii 5-0, Nitragin 92A3, and Nitragin 128A12) exhibited a high degree of strain specificity; the antibodies reacted strongly with their homologous rhizobia in culture and with bacteroids in nodules. They did not cross-react with one another, and only weakly with 5 of the 47 other R. leguminosarum cultures tested. In competition studies in the growth chamber, whenever strain Nitragin 92A3 was included in the inoculum mixture, it consistently (but not always significantly, P = 0.05) occupied the majority of nodules on all four cultivars used. However, some degree of strain X cultivar interaction was apparent: Hawaii 5-0 was of equal competitiveness (P = 0.05) with Nitragin 92A3 on three of the varieties (Commercial, Tekoa, and Benewah), but inferior (P = 0.01) on the Chilean variety; Nitragin 92A3 completely dominated (P = 0.01) Nitragin 128A12 on all cultivars; and Hawaii 5-0 was of equal competitiveness (P = 0.05) to Nitragin 128A12 on the Chilean variety and more competitive (P = 0.01) on the commercial variety and less so on the other two varieties. In field experiments, Hawaii 5-0 proved of equal competitiveness (P = 0.01) with Nitragin 92A3 in one soil (an Inceptisol) and superior (P ≤ 0.05) to it in another (an Oxisol). Incidence of double-strain occupancy of nodules varied from 0 to 36% in vermiculite, depending on the strains in the mixture and the host variety, and from 0 to 38% in the field, depending on the strains in the mixture and the soil type. The results suggest a close relationship between the competitiveness of a strain and its occurrence in doubly infected nodules.  相似文献   

7.
A 35-kilobase plasmid was conserved among 12 copper-resistant strains of Pseudomonas syringae pv. tomato. Restriction patterns of this plasmid from each strain were identical, and a cloned copper resistance gene from 1 strain hybridized to the same location on the 35-kilobase plasmid of all 12 strains.  相似文献   

8.
Strains of Rhizobium leguminosarum (biovar trifolii) isolated from two Ethiopian soils or obtained from a commercial source were evaluated for symbiotic effectiveness on five African annual clover species. Numerous Rhizobium trifolii strains that exhibited varying levels of symbiotic effectiveness were isolated from both soils (a nitosol and a vertisol), and it was possible to identify strains that were highly effective for each clover species. The soil isolates were, as a group, superior to the strains from the commercial source. Several R. trifolii strains were found to be effective on more than one clover species, and there appeared to be at least two and possibly three distinct cross-inoculation effectiveness groups.  相似文献   

9.
10.
Plasmid pMG1 (65.1 kb) was isolated from a gentamicin-resistant Enterococcus faecium clinical isolate and was found to encode gentamicin resistance. EcoRI restriction of pMG1 produced five fragments, A through E, with molecular sizes of 50.2, 11.5, 2.0, 0.7, and 0.7 kb, respectively. The clockwise order of the fragments was ACDEB. pMG1 transferred at high frequency to Enterococcus strains in broth mating. pMG1 transferred between Enterococcus faecalis strains, between E. faecium strains, and between E. faecium and E. faecalis strains at a frequency of approximately 10−4 per donor cell after 3 h of mating. The pMG1 transfers were not induced by the exposure of the donor cell to culture filtrates of plasmid-free E. faecalis FA2-2 or an E. faecium strain. Mating aggregates were not observed by the naked eye during broth mating. Small mating aggregates of several cells in the broth matings were observed by microscopy, while no aggregates of donor cells which had been exposed to a culture filtrate of E. faecalis FA2-2 or an E. faecium strain were observed, even by microscopy. pMG1 DNA did not show any homology in Southern hybridization with that of the pheromone-responsive plasmids and broad-host-range plasmids pAMβ1 and pIP501. These results indicate that there is another efficient transfer system in the conjugative plasmids of Enterococcus and that this system is different from the pheromone-induced transfer system of E. faecalis plasmids.  相似文献   

11.
Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.  相似文献   

12.
Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.  相似文献   

13.
The plastid terminal oxidase (PTOX) is distantly related to the mitochondrial alternative oxidase (AOX). Both are members of the diiron carboxylate quinol oxidase (DOX) class of proteins. PTOX and AOX contain 20 highly conserved amino acids, six of which are Fe-binding ligands. We have previously used in vitro and in planta activity assays to examine the functional importance of the Fe-binding sites. In this report, we conduct alanine-scanning mutagenesis on the 14 other conserved sites using our in vitro and in planta assay procedures. We found that the 14 sites fall into three classes: (i) Ala-139, Pro-142, Glu-171, Asn-174, Leu-179, Pro-216, Ala-230, Asp-287, and Arg-293 are dispensable for activity; (ii) Tyr-234 and Asp-295 are essential for activity; and (iii) Leu-135, His-151, and Tyr-212 are important but not essential for activity. Our data are consistent with the proposed role of some of these residues in active site conformation, substrate binding, and/or catalysis. Titration experiments showed that down-regulation of PTOX to ∼3% of wild-type levels did not compromise plant growth, at least under ambient growth conditions. This suggests that PTOX is normally in excess, especially early in thylakoid membrane biogenesis.Alternative oxidase (AOX)2 is a terminal oxidase that functions in the alternative pathway of mitochondrial respiration (1). It catalyzes the four-electron reduction of oxygen to water and branches from the cytochrome pathway at the level of the quinone pool (15). The alternative oxidase is found in two of the three domains of life, Bacteria and Eucarya, but not in Archaea; among Eucarya it is found in all kingdoms (i.e. plants, animals, fungi, protists) (4, 5). It is thought that AOX is activated when the cytochrome pathway becomes saturated, for instance, during oxidative stress when the inner membrane is highly energized and prone to the production of reactive oxygen species (ROS) (3, 69).The IMMUTANS locus of Arabidopsis codes for a plastid homolog of AOX (10, 11). IM-like proteins have subsequently been found in a diverse array of plant, algal, and cyanobacterial species; IM does not appear to be present in animals (12). Also similar to AOX, IM functions as a terminal oxidase, transferring electrons from the plastoquinol (PQ) pool to molecular oxygen (1317). IM is thus frequently designated “PTOX” (plastid terminal oxidase). (To avoid confusion, we will use the term PTOX in this report and IMMUTANS when describing the Arabidopsis gene for PTOX.) Current thinking is that PTOX is an important alternative electron sink in plastid membranes and that it lies at the intersection of many redox pathways. These include the desaturation reactions of carotenoid biosynthesis and chlororespiration (18, 19). Reminiscent of AOX, PTOX has been hypothesized to serve as a “safety valve” for the dissipation of excess electron flow, e.g. during stress (2023). Consistent with this view, studies in tomato ghost (the ortholog of the Arabidopsis im mutant) reveal that lack of PTOX in young seedlings as well as in mature tomato leaves results in increased sensitivity to high light stress due to disturbances in the redox status of the plastoquinone pool (23). In contrast, in vivo chlorophyll fluorescence measurements reveal that modulating IMMUTANS expression and/or protein accumulation does not alter the flux of intersystem electrons during steady state photosynthesis in Arabidopsis nor does it afford photoprotection (17). However, IMMUTANS expression is strongly regulated by developmental factors in Arabidopsis, and the phenotype of im strongly argues that PTOX function in Arabidopsis is required early in chloroplast biogenesis. Together, these studies suggest that PTOX functions in a developmental- and species-specific manner.AOX and PTOX are members of the DOX (non-heme diiron carboxylate quinol oxidase) family of proteins (4, 5, 2429). By analogy to crystal structure determinations of non-plant members of this family, it has been proposed that the diiron centers of AOX and PTOX are coordinated by four carboxylate and two His residues on a four-helix bundle (2628). Sequence alignments have revealed that the six putative Fe-binding residues are highly conserved in the sequences of all AOX and PTOX proteins examined to date. In addition, nearly all PTOX enzymes contain a 16-amino acid domain near the C terminus that is highly conserved, but that is not found in AOX (13). Curiously, this sequence corresponds precisely to exon 8 of the gene.We previously used PTOX as a model to test the functional significance of the conserved Fe-binding and exon 8 sequences (13). These experiments were facilitated by the availability of two important tools: 1) an in vitro activity assay, developed by Josse et al. (15, 18); and 2) null alleles of the Arabidopsis immutans (im) mutant, which made in planta mutagenesis experiments possible. Arabidopsis im mutants have a light-sensitive green- and white-variegation due to action of a nuclear recessive gene -enhanced light intensities promote white sector formation (3032). The white sectors contain abnormal, photooxidized plastids as a consequence of a lack of colored carotenoid production, while the green sectors contain morphologically normal chloroplasts. When transformed with a wild-type IM sequence, im plants revert to an all-green phenotype. Mutagenized copies of IM can thus be tested for their ability to normalize the im variegation and restore a wild type appearance. Our previous in vitro and in planta experiments showed that the six amino acids that bind iron do not tolerate change, even conservative ones, and that the exon 8 domain is required for PTOX activity and stability (13).In this report, we examine 14 other amino acids that are perfectly conserved, or nearly so, in the sequences of all AOX and PTOX reported to date: Leu-135, Pro-142, Ala-139, His-151, Glu-171, Asn-174, Leu-179, Tyr-212, Pro-216, Ala-230, Tyr-234, Asp-287, Arg-293, Asp-295 (numbering refers to the Arabidopsis PTOX sequence). Most of these residues are predicted to reside in close proximity to the six Fe-binding sites. In this report, we test the functional significance of these sites by in vitro and in planta alanine-scanning mutagenesis, and report that very few of these sites are absolutely essential for activity. In addition, some mutant enzymes are defective in vitro, but are able to complement im. RNAi, antisense, and co-suppression experiments showed that transgenic plants with less than 3% of wild-type PTOX levels produce normal appearing plants. Considered together, the data suggest that PTOX is normally in excess, especially during the process of thylakoid formation early in leaf development when sector formation is established (33).  相似文献   

14.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

15.
16.
Most aerobic biodegradation pathways for hydrocarbons involve iron-containing oxygenases. In iron-limited environments, such as the rhizosphere, this may influence the rate of degradation of hydrocarbon pollutants. We investigated the effects of iron limitation on the degradation of toluene by Pseudomonas putida mt2 and the transconjugant rhizosphere bacterium P. putida WCS358(pWWO), both of which contain the pWWO (TOL) plasmid that harbors the genes for toluene degradation. The results of continuous-culture experiments showed that the activity of the upper-pathway toluene monooxygenase decreased but that the activity of benzyl alcohol dehydrogenase was not affected under iron-limited conditions. In contrast, the activities of three meta-pathway (lower-pathway) enzymes were all found to be reduced when iron concentrations were decreased. Additional experiments in which citrate was used as a growth substrate and the pathways were induced with the gratuitous inducer o-xylene showed that expression of the TOL genes increased the iron requirement in both strains. Growth yields were reduced and substrate affinities decreased under iron-limited conditions, suggesting that iron availability can be an important parameter in the oxidative breakdown of hydrocarbons.  相似文献   

17.
The nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has become an important nuclear locus for molecular systematic investigations of angiosperms at the intergenic and interspecific levels. Universal PCR primers are positioned on the conserved rRNA genes (18S, 5.8S, 26S) to amplify the entire ITS spacer region. Recent reports of fungal and algal contaminants, first described as plant ITS sequences, stress the need for diagnostic markers specific for the angiosperm ITS region. This report describes a conserved 14 base pair (bp) motif in the 5.8S rRNA gene that can be used to differentiate between flowering plants, bryophytes, and several orders of algae and fungi, including common plant pathogenic and non-pathogenic fungi. A variant of the motif (found in fungi and algae) contains a convenient EcoRI restriction site that has several applications for eliminating problematic contaminants from plant ITS preparations.  相似文献   

18.
The interaction of fibrinogen (Fg) with intercellular adhesion molecule-1 (ICAM) on B-lymphoid Raji cells results in mitogenesis (Gardiner, E. E., and D'Souza, S. E. (1997) J. Biol. Chem. 272, 15474-15480). Incubation of Raji with Fg resulted in the increased tyrosine phosphorylation of the receptor-associated tyrosine kinase, pp60(Src) and extracellular signal-regulated kinase-1 (ERK). The increase in ERK-1 phosphorylation was blocked by a peptide with sequence matching ICAM-1-(8-22) and corresponded to a decrease in ERK-1 enzymatic activity. 100 microM amounts of Fg peptide gamma-(117-133) caused an increase in tyrosine phosphorylation of ERK-1. These results are consistent with our previous report wherein ICAM-1-(8-22) blocked Fg-induced mitogenesis and Fg-gamma-(117-133) induced proliferation in Raji. The specific inhibitor of MEK, PD98059 (25 microM), abrogated the increased phosphorylation of ERK-1 and blocked Raji mitogenesis by >50%. Inhibitors of pp60(Src), geldanamycin (62 nM), and herbimycin A (2.5 microM) blocked >50% of Raji proliferation. These results indicate that the proliferation induced by Fg interactions with ICAM-1 is mediated in part by receptor-associated tyrosine kinases and ERK-1, and that the recognition sequences within Fg and ICAM-1 participate in the signaling process.  相似文献   

19.
The flavivirus genome is a positive-stranded ~11-kb RNA including 5′ and 3′ noncoding regions (NCR) of approximately 100 and 400 to 600 nucleotides (nt), respectively. The 3′ NCR contains adjacent, thermodynamically stable, conserved short and long stem-and-loop structures (the 3′-SL), formed by the 3′-terminal ~100 nt. The nucleotide sequences within the 3′-SL are not well conserved among species. We examined the requirement for the 3′-SL in the context of dengue virus type 2 (DEN2) replication by mutagenesis of an infectious cDNA copy of a DEN2 genome. Genomic full-length RNA was transcribed in vitro and used to transfect monkey kidney cells. A substitution mutation, in which the 3′-terminal 93 nt constituting the wild-type (wt) DEN2 3′-SL sequence were replaced by the 96-nt sequence of the West Nile virus (WN) 3′-SL, was sublethal for virus replication. An analysis of the growth phenotypes of additional mutant viruses derived from RNAs containing DEN2-WN chimeric 3′-SL structures suggested that the wt DEN2 nucleotide sequence forming the bottom half of the long stem and loop in the 3′-SL was required for viability. One 7-bp substitution mutation in this domain resulted in a mutant virus that grew well in monkey kidney cells but was severely restricted in cultured mosquito cells. In contrast, transpositions of and/or substitutions in the wt DEN2 nucleotide sequence in the top half of the long stem and in the short stem and loop were relatively well tolerated, provided the stem-loop secondary structure was conserved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号