首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
毛茛科金莲花亚科植物的地理分布   总被引:11,自引:1,他引:10  
本文对毛茛科金莲花亚科各属的地理分布作了分析,该亚科植物除了少数属的一些种分布到南半球的温带地区,一些种分布或延伸到亚热带山地、非洲东部和北部的干旱、半干旱的地区外,绝大部分的属、种均分布于泛北极区域。根据其17个属的地理分布式样,把它们划分为8个分布区类型:(1)北温带分布类型4属;(2)北温带和非洲分布类型1属;(3)北半球温带和南半球间断分布类型1属;(4)欧洲和东亚间断分布类型1属;(5)西亚分布类型1属;(6)地中海分布类型3属;(7)欧亚和温带亚洲分布类型1属;(8)东亚分布类型5属。本文以形态特征为主,结合花粉和染色体的性状分析,认为东亚特有的鸡爪草属、Megaleranthis和铁破锣属可能分别是联系驴蹄草属和金莲花属,鸡爪草属和金莲花属以及金莲花族和升麻族的中间类型。另外,文中详细地统计了该亚科的不同等级分类群及特有种在各个植物区的分布,并从系统发育的观点讨论了各个植物区所具有的原始类群和进化类群,提出了如下论点,即东亚植物区(特别是中国西南部)不但是金莲花亚科植物分布的多度和多样性中心以及特有类群的分布中心,而且还是原始类群的保存中心,伊朗-土兰区及地中海周围是第二分布中心。  相似文献   

2.
毛茛科金莲花亚科植物的地理分布   总被引:3,自引:0,他引:3  
本文对毛茛科金莲花亚科各属的地理分布作了分析,该亚科植物除了少数属的一些种分布到南半球的温带地区,一些种分布或延伸到亚热带山地、非洲东部和北部的干旱、半干旱的地区外,绝大部分的属、种均分布于泛北极区域。根据其17个属的地理分布式样,把它们划分为8个分布区类型:(1)北温带分布类型4属;(2)北温带和非洲分布类型1属;(3)北半球温带和南半球间断分布类型l属;(4) 欧洲和东亚间断分布类型l属;(5)西亚分布类型l属;(6)地中海分布类型3属;(7)欧亚和温带亚洲分布类型l属;(8)东亚分布类型5属。本文以形态特征为主,结合花粉和染色体的性状分析,认为东亚特有的鸡爪草属、Megaleranthis和铁破锣属可能分别是联系驴蹄草属和金莲花属,鸡爪草属和金莲花属以及金莲花族和升麻族的中间类型。另外,文中详细地统计了该亚科的不同等级分类群及特有种在各个植物区的分布,并从系统发育的观点讨论了各个植物区所具有的原始类群和进化类群,提出了如下论点,即东亚植物区(特别是中国西南部)不但是金莲花亚科植物分布的多度和多样性中心以及特有类群的分布中心,而且还是原始类群的保存中心,伊朗-土兰区及地中海周围是第二分布中心。  相似文献   

3.
金缕梅科:地理分布、化石历史和起源   总被引:19,自引:2,他引:17  
本文利用系统发育与地理分布相结合的方法,探讨金缕梅科各属植物的系统位置和分布式样,并结合化石、古地理及古气候等证据,讨论该科的分布中心,可能的起源时间和地点以及现代分布式样形成的原因。研究结果表明:全世界金缕梅科植物共30属144种,间断分布于亚洲西部、东部、东南部,非洲东部、南部,大洋洲的澳大利亚东北部以及中美洲和北美洲的东南部,欧洲和南美洲尚无现代类群分布的记载。它基本上是一个热带和亚热带山地分布的科。通过对该科30个属的系统位置及其分布式样的分析,将金缕梅科属的分布归纳为:A.热带分布类型(18属),包括(1)热带亚洲分布(11属),(2)热带中美洲分布(2属),(3)热带非洲分布(2属),(4)热带大洋洲分布(3属),B.温带分布类型(12属),包括(5)东亚分布(7属),(6)西亚分布(2属),(7)西亚-东亚-北美间断分布(1属),(8)东亚-北美间断分布(1属),(9)北美分布(1属)。东亚区南部到印度支那区北部(即中国长江以南至中南半岛北部地区)是它的现代分布区中心;根据化石证据、原始类型分布和外类群分布分析,提出该科植物起源于劳亚古陆,并曾经有一个很长的白垩纪历史,至少在早白垩纪金缕梅科植物的先驱就已经出现。最后,从地质和气候的变迁等方面探讨了金缕梅科现代分布区形成的原因。  相似文献   

4.
高粱属植物的地理分布   总被引:1,自引:0,他引:1  
为探讨高粱属(Sorghum Moench)的系统发育关系,通过野外调查及查阅标本和文献资料,对高粱属植物的地理分布进行了整理和研究。高粱属植物约有29种,分布于全世界热带到温带地区,其中澳大利亚22种,亚洲15种,非洲9种,欧洲3种,地中海2种,美洲6种。中国有5种,分布在东北、西南到华南各省(区)。高粱属有5亚属,仅高粱亚属(subgen.Sorghum)延伸至新世界,其他亚属均分布在旧世界,高粱亚属覆盖非洲并扩散到全世界热带到温带地区;拟高粱亚属(subgen.Parasorghum)分布在非洲、亚洲、澳大利亚;有柄高粱亚属(subgen.Stiposorghum)主要分布在澳大利亚,个别种分布到亚洲;多毛高粱亚属(subgen.Chaetosorghum)分布在澳大利亚;异高粱亚属(subgen.Heterosorghum)分布在澳大利亚和亚洲。这表明澳大利亚东北部是高粱属的现代分布中心和多样化中心,非洲东北部和热带亚洲是否是高粱属的起源地尚需确证。  相似文献   

5.
柽柳科柽柳属的植物地理研究   总被引:8,自引:1,他引:7  
柽柳属是典型的旧世界温带分布属。对柽柳属3组68种的分布进行了分析,发现本属3个频度分布中心依次为伊朗—吐兰区的西亚亚区(30种/3组,其中特有种13种),中亚亚区(20种/2组,其中特有种6种)和地中海区(12种/3组,其中特有种6种)。由于伊朗—吐兰地区的西亚亚区存在本属最多的组与种、特有种多且可以见到柽柳属系统发育系列,因而认为该亚区是现存本属植物的现代分布中心和分化中心。地中海地区包含的组、种数仅次于伊朗—吐兰区,并且特有种为6种,带有新特有种的性质,全是系统发育上相对年轻、进步的类型,被认为是本属的一个次级分布中心,另一个次级分布中心在中亚亚区,尤其是中国西北干旱地区。根据柽柳属植物的现代地理分布、化石资料及地质历史资料,推测柽柳属起源于古地中海热带成分盛行的早第三纪始新世,具有起源古老的性质,并且随着晚第三纪古地中海的退缩、气候逐渐干旱而得到进一步发展,产生许多新的以温带成分为主适应旱生环境的现代柽柳属种类。柽柳属起源之后,首先繁衍、散布到以伊朗为中心的现代分布中心,其后以伊朗为廊道向西、向东扩散,在地中海沿岸、东非、阿拉伯半岛、非洲西南部及亚洲中部的荒漠地区得到发展。  相似文献   

6.
整理燕麦属(Avena L.)细胞遗传学研究文献,总结相关研究进展。燕麦属有7组29种植物,分属5个基因组类型(A、C、AB、AC、ACD)。基于荧光原位杂交技术和种间杂交实验表明,A、C基因组染色体结构差异较大,A基因组二倍体物种具有等臂染色体,C基因组二倍体物种具有不等臂染色体。燕麦属植物D基因组和A基因组间分化程度较小,B基因组有可能是A基因组的变型——A′基因组。普遍观点认为A基因组二倍体物种可能是燕麦属六倍体物种母系亲本,砂燕麦(A.strigosa)为该属多倍体物种A基因组祖先的假说备受争议,有学者认为加那利燕麦(A.canariensis)可能是多倍体物种A或D基因组的供体。燕麦属多倍体物种基因组互换及染色体重排事件,增加燕麦属种间亲缘关系、多倍体物种基因组起源研究的困难。结合基因组学、分子细胞遗传学技术,有望为上述问题提供新证据。  相似文献   

7.
粉条儿菜属(AletrisL.)隶属于肺筋草科,全世界有23种1变种,东亚有18种1变种,北美东南部有5种,为典型的东亚-北美间断分布的属.本文在种(变种)的水平上,研究了粉条儿菜属的地理分布及其分布中心和多样化中心,并对其起源和分化以及现代洲际间断分布格局的成因进行了分析.结果表明,(1)中国共分布有粉条儿菜属植物15种1变种,而广义的横断山地区集中分布有13种1变种,是东亚粉条儿菜属植物分布最为集中的地区,而且包含该属植物各个进化阶段的代表.因此,广义的横断山地区是粉条儿菜属在东亚的分布中心和多样化中心.(2)根据粉条儿菜属及其近缘属的分布格局推测,该属可能在不晚于第三纪早期,起源于古北大陆.东亚和北美的粉条儿菜属植物形态区别明显,应该是隔离分化的结果.(3)该属植物可能曾经广布于北半球,后来地质、气候以及冰川等因素的变化,导致该属在一些地区灭绝,而仅存于东亚和北美东南部.(4)尽管横断山及其周边地区是东亚粉条儿菜属的多样化中心,但该地区很可能并不是粉条儿菜属最早的分化中心,因横断山地区周边的一些特有种可能是在晚近的时期形成的新特有种;另外,东亚粉条儿菜属一些原始的种类主要分布于我国中东部到日本一带.所以,中国中东部到日本一带可能是粉条儿菜属早期的分化中心.  相似文献   

8.
杨亚科(Populoideae)植物自然分布于热带非洲和大约从北纬19°~70°度的北半球,由胡杨属(Balsamiflua)和杨属(Populus)2个属所组成。胡杨属间断分布于赤道非洲、古地中海地区和墨西哥,包含2个组(胡杨组、墨杨组)和约3个天然种。杨属分布于欧洲、亚洲、非洲(北缘)和北美洲的广大地区,包含大叶杨亚属(Subgen.Leucoides)(大叶杨组)、杨亚属(Subgen.Populus)(青杨组、黑杨组、杨组)2个亚属和约52个天然种。拟定了杨亚科属的检索表、胡杨属组和种的检索表、杨属亚属和组的检索表以及杨属中各组种的检索表。提供了一个杨树种类目录,包括它们的正名、异名、文献引注和地理分布等。  相似文献   

9.
獐牙菜属是龙胆科中的一个大属,广泛分布于亚洲、北美洲、欧洲和非洲.本文报道獐牙菜属下的两个新组(sect.Montana和sect.Echinulata)和七个新系(ser.Repentes,ser.Kilimandscharicae,ser.Coombosae,ser.Japonicae,ser.Swertopsis,ser.Pumilae和ser.Abyssinicae).同时对獐牙菜属中的一些类群进行了分类修订,本分类纲要将被獐牙菜属世界专著采用.  相似文献   

10.
燕麦属(Avena L.)植物中有5个栽培种即普通栽培燕麦(A. sativa L.)、埃塞俄比亚燕麦(A. abyssinica Hochst.)、地中海燕麦(A. byzantina Koch)、砂燕麦(A. strigosa Schreb.)和大粒裸燕麦又称莜麦(A. nuda L.),其中大粒裸燕麦的子粒不带稃皮为裸燕麦,其他物种均带稃皮为皮燕麦。国际上主要种植皮燕麦,而我国主要种植大粒裸燕麦,由此不难看出,大粒裸燕麦在世界燕麦中占有特殊的地位。然而,关于大粒裸燕麦的起源和分类地位问题,迄今学者们的意见仍不尽相同。笔者通过参阅有关文献和研究实践,对这两个问题进行探讨,认为大粒裸燕麦起源于我国山西和内蒙古一带,在植物学分类上应为一个独立的物种即A. nuda L.。  相似文献   

11.

Background

The burden of Congenital Rubella Syndrome (CRS) is typically underestimated in routine surveillance. Updated estimates are needed following the recent WHO position paper on rubella and recent GAVI initiatives, funding rubella vaccination in eligible countries. Previous estimates considered the year 1996 and only 78 (developing) countries.

Methods

We reviewed the literature to identify rubella seroprevalence studies conducted before countries introduced rubella-containing vaccination (RCV). These data and the estimated vaccination coverage in the routine schedule and mass campaigns were incorporated in mathematical models to estimate the CRS incidence in 1996 and 2000–2010 for each country, region and globally.

Results

The estimated CRS decreased in the three regions (Americas, Europe and Eastern Mediterranean) which had introduced widespread RCV by 2010, reaching <2 per 100,000 live births (the Americas and Europe) and 25 (95% CI 4–61) per 100,000 live births (the Eastern Mediterranean). The estimated incidence in 2010 ranged from 90 (95% CI: 46–195) in the Western Pacific, excluding China, to 116 (95% CI: 56–235) and 121 (95% CI: 31–238) per 100,000 live births in Africa and SE Asia respectively. Highest numbers of cases were predicted in Africa (39,000, 95% CI: 18,000–80,000) and SE Asia (49,000, 95% CI: 11,000–97,000). In 2010, 105,000 (95% CI: 54,000–158,000) CRS cases were estimated globally, compared to 119,000 (95% CI: 72,000–169,000) in 1996.

Conclusions

Whilst falling dramatically in the Americas, Europe and the Eastern Mediterranean after vaccination, the estimated CRS incidence remains high elsewhere. Well-conducted seroprevalence studies can help to improve the reliability of these estimates and monitor the impact of rubella vaccination.  相似文献   

12.
The genus Swertia is one of the large genera in Gentianaceae, including 154 species, 16 series and 11 sections. It is disjunctly distributed in Europe, Asia, Africa and N. America, but entirely absent from Oceania and S. America. According to Takhtajan’s (1978) regionalization of the world flora, Swertia is found in 14 regions. Eastern Asiatic region with 86 species, of which 58 are local endemics, 13 series and 9 sections, ranks the first among all the regions. The highest concentration of the taxa and endemics in Eastern Asiatic region occurs in SW China-Himalayan area (Sikang-Yunnan P. , W. Sichuan, W. Yunnan-Guichou Plateau of China and NE. Burma, N. Burmense P. , E. Himalayan P. and Khasi-Manipur P. ). In this area there are 74 species (48 endemics), 12 series, and 9 sections; thus about half species of the world total, three quarters of series and 82% of sections occur in this small area. Besides, the taxa at different evolutionary stages in Swertia also survive here. It is an indication that SW. China-Himalayan area is a major distribution centre of the genus Swertia. In addition, Sudan-Zambezian Region in Africa, with 22 species, 4 series and 2 sections, is a second distribution centre. The primitive type of the genus Swertia is Sect. Rugosa which consists of 2 series and 23 species. It is highly centred in the mountains of SW. China (Yunnan, Sichuan, Guizhou and SE. Xizang) where 2 series and 16 species occur. Among them 15 species of Ser. Rugosae were considered as the most primitive groups in this genus. From our study, the outgroup of Swertia is the genus Latouchea Frahch. , which is distributed in Yunnan, Sichuan, Guizhou, Hunan, Guangdong, Guangxi and Fujian. The two groups overlap in distribution in SW. China. According to the principle of common origin, the ancestor of two genera ap peared most probably in this overlapping area. It was inferred that SW. China Was the birth-place of the genus Swertia. Four sections of Swertia have different disjunct distribution patterns: Sect. Ophelia is of Tropic Asia, Africa and Madagascar disjunct distribution; sect. Swertia is of north temperate distribution; sect. Spinosisemina is in Tropical Asia (Trop. India to S. China and Philipines); sect. Platynema also is in Tropical Asia (Java, Sumatra, Himalayas to SW. China). These disjunct patterns indicate that the Swertia floras between the continents or between continent and islands have a connection with each other. From paleogeographical analysis, Swertia plants dispersed to Madagascar before the Late Cretaceous, to SE. Asian Islands in the Pleistocene, to North America in the Miocene. The distribution of Swertia in Madagascar might be later than that in Asia. Therefore the origin time of the genus Swertia was at least not later than the Late Cretaceous, and might be back to the Mid-Cretaceous. The genus Swertia first fully developed and differentiated, forming some taxa at different evolutionary stages (Rugosa, Swertia, Poephila, Ophelia and Platynema etc. ) in the original area, and these taxa quickly dispersed in certain directions during the Late Cretaceous-Middle Tertiary when the global climate was warm and no much change. There seem to be three main dispersal routes from the origin area to different continents; (1) The westward route i. e. from SW. China, along the Himalayas area to Kashmir, Pakistan, Afghanistan and Iran, and then southwestwards into Africa throuth Arabia. Four sections (Poephila, Macranthos, Kingdon-Wardia and Ophelia) took this dispersal route. Most species of sect. Ophelia dispersed along this route, but a few along southern route and north ern route. Sect. Ophelia greatly differentiated in Africa and the African endemic sectionSect. Montana was derived from it. The two sections form there a second distribution center of Swertia. (2) The southward route, i. e. towards S. India through the Himalayas, and towards SE. Asian islands through C. and S. China, Indo-China. Along this dispersal route sect. Platynema, Sect. Spinosisemina and a few species of Sect. Ophelia dispersed; (3) The northward rout, i. e. northwards across N. China, C. Asia to a high latitude of Euasia, and also through E. Asia into N. America. The following groups took this route: sect. Rugosa, sect. Swertia, sect. Frasera, sect. Heteranthos and sect. Ophelia ser. Dichotomae. Therefore, it seems that the genus Swertia originated in SW. China and then dispersed from there to N. and S. Asia, Africa, Europe and North America and formed the moderndistribution pattern of this genus.  相似文献   

13.
A morphological comparison of specimens previously assigned to Alona eximia Kiser, 1948 from tropical Africa, Eastern Asia and the Americas shows that this species-group shares a number of morphological characters on the postabdomen, head pores, first antenna and second and fourth limb that separate them from Alona Baird, 1843 but unite them with Nicsmirnovius Chiambeng & Dumont, 1999. Alonella fitzpatricki Chien, 1970, formerly believed to be a junior synonym of A. eximia, is separated from the latter and assigned to the genus Nicsmirnovius. Two new taxa, from Africa and the Island of Socotra (Yemen) are added to the genus. The relationship between the specialised habitat of these chydorids and their morphology is discussed. The geographic range of all known populations is figured and a key to species is presented.  相似文献   

14.
The Golden eagle (Aquila chrysaetos) is among the most widespread of the birds of prey, covering basically the whole Palaearctic from Europe and North Africa through Asia and Japan, to the North American continent. Only few studies have addressed the species’ genetic structure and the consequences of its demographic history so far, and none of them has covered larger areas of the distribution range. Our present study aims at closing this gap. Based on 283 samples (mostly feathers collected in the field or from museum collections) across the species’ distribution, but with a focus on Europe, we uncover the phylogeography of the Golden eagle. Results imply a phylogeographic split between mainly Northern Europe, Continental Asia, Japan and North America on the one hand and Central–Southern Europe on the other. The observed pattern is likely to be caused by the Last Ice Age, when the population survived in two reproductively isolated glacial refugia. Repopulation of Northern Europe occurred from a presumed Asian refugium, whereas the Alpine range was probably repopulated from a refugium in the Mediterranean region. In Eastern Europe, the Mediterranean and Alpine region we find a co‐occurrence of both lineages that heavily influences the local genetic diversity. This pattern is unlike that in most other large raptors in which usually a western and an eastern Eurasian lineage have been recovered.  相似文献   

15.
Aim This paper presents a synthesis of our recent results regarding the biogeography of Plagiochila using a molecular approach, and documents intercontinental ranges within this largest genus of the hepatics. Methods A maximum likelihood analysis of sixty‐one nrITS sequences of Plagiochila was performed and the molecular topology obtained was compared with morphological, phytochemical and geographical data. Results Our molecular data set allowed the identification of eleven Plagiochila sections, the majority of which cover at least two floristic kingdoms. Seven sections have species in Europe (sect. Arrectae, Carringtoniae, Fuscoluteae, Glaucescentes, Plagiochila, Rutilantes, Vagae). Plagiochila species from Atlantic Europe are usually close to or conspecific with neotropical taxa, whereas species widespread in Europe are closely related to Asian ones and not to those in the Neotropics. Plagiochila sect. Arrectae represents a neotropical – Atlantic European clade. The section is not closely related – as has often been suggested – to the morphologically similar sect. Zonatae from Asia and western North America. Sequence data show that the African P. integerrima and the neotropical P. subplana are members of the Asian sect. Cucullatae (sect. Ciliatae, syn. nov.), which becomes pantropical in distribution. An ITS sequence of P. boryana from Uganda confirms the Afro‐American range of the primarily neotropical sect. Hylacoetes. Similarities in sporophyte morphology between the sect. Cucullatae and sect. Hylacoetes are the result of parallel evolution. Main conclusions Our results indicate that intercontinental ranges at section and species level are common in Plagiochila. Carl's (1931) subdivision of Plagiochila into sections restricted to one floristic kingdom is outdated. Biogeographical patterns in Plagiochila are not dissimilar to those of other groups of bryophytes but elucidation of the geographical ranges of the taxa requires a molecular approach. Contrary to earlier belief, most Plagiochila species from Atlantic Europe do not have close relatives in Asia but are conspecific with or closely related to species from tropical America.  相似文献   

16.
ABSTRACT. The ciliate Trichodina was recorded on the calanoid Notodiaptomus deitersi in a shallow, eutrophic reservoir, located in the centre‐west of Brazil. The species was confirmed as Trichodina diaptomi, a species widely distributed in Europe, Africa, Asia and Australia. It was observed moving freely over the carapace of the copepod, and using its adhesive disc. This is the first record for the species in the Americas.  相似文献   

17.
Varroa jacobsoni (Acari: Varroidae) is more than one species   总被引:5,自引:0,他引:5  
Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia–Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study.Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas.Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.  相似文献   

18.
Fleas of the Caucasus belong to 155 species of 40 genera, constituting 17% and 43% of the species and generic composition of the Palaearctic fauna, respectively. The Caucasian fauna includes 23 endemic species but no endemic genera or subgenera. In the number of species, the Caucasian fauna is similar to that of the Mediterranean Subregion and is significantly poorer than the faunas of the Euro-Siberian (by 2.2 times) and Irano-Turanian (by 1.7 times) Subregions. Based on taxonomic diversity, we can propose a hypothesis on the West and East Palaearctic sources of the Caucasian fauna. The West Palaearctic source has determined the distribution of pulicomorph fleas of the families Pulicidae and Coptopsyllidae from Africa, on the one hand, and of fleas of the genera Ctenopthalmus and Palaeopsylla from Europe, on the other hand. Fleas of the Holarctic genera, such as Ceratophyllus and Megabothris, entered the Caucasus by the north Asian route; fleas of the genera Neopsylla, Rhadinopsylla, and Hystrichopsylla migrated to the Caucasus from east and central Asia by the south Asian route, through Middle and Western Asia.  相似文献   

19.
Predicting the potential geographical distribution of a species is particularly important for pests with strong invasive abilities. Tetranychus evansi Baker & Pritchard, possibly native to South America, is a spider mite pest of solanaceous crops. This mite is considered an invasive species in Africa and Europe. A CLIMEX model was developed to predict its global distribution. The model results fitted the known records of T. evansi except for some records in dry locations. Dryness as well as excess moisture stresses play important roles in limiting the spread of the mite in the tropics. In North America and Eurasia its potential distribution appears to be essentially limited by cold stress. Detailed potential distribution maps are provided for T. evansi in the Mediterranean Basin and in Japan. These two regions correspond to climatic borders for the species. Mite establishment in these areas can be explained by their relatively mild winters. The Mediterranean region is also the main area where tomato is grown in open fields in Europe and where the pest represents a threat. According to the model, the whole Mediterranean region has the potential to be extensively colonized by the mite. Wide expansion of the mite to new areas in Africa is also predicted. Agricultural issues highlighted by the modelled distribution of the pest are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号