首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foliage construction cost (glucose requirement for formation of a unit foliar biomass, G , kg glu kg−1), chemical composition and morphology were examined along a light gradient across the canopies in five deciduous species, which ranked according to increasing shade-tolerance as Populus tremula < Fraxinus excelsior < Tilia cordata = Corylus avellana < Fagus sylvatica . Light conditions in the canopy were estimated by a hemispheric photographic technique, allowing ranking of sample locations according to long-term light input incident to the sampled leaves (relative irradiance). G and foliage carbon concentration increased with increasing relative irradiance in F. excelsior , T. cordata and C. avellana , but wereindependent of irradiance in F. sylvatica and P. tremula . However, if G of non-structural-carbohydrate-free dry mass was considered, it also increased with increasing relative irradiance in P. tremula . A positive correlation between the concentration of carbon-rich lignin and irradiance, probably a result of the acclimation to greater water stress at higher light, was the major reason for the light-dependence of G . Lignin concentrations were highest in more shade-tolerant species, resulting in greatest carbon concentrations in these species. Since carbon concentration and G are directly linked, the leaves of shade-tolerant species were also more expensive to construct. As the result of these effects, G increased faster with increasing leaf dry mass per area which was mainly determined by relative irradiance, in shade-tolerators. Given that shade-tolerant species had lower leaf dry mass per area at common irradiance and that this saturated at lower relative irradiance than leaf dry mass per area in the intolerant species, it was concluded that enhanced energy requirements for foliage construction might constrain species morphological plasticity and the upper limit of leaf dry mass per area attainable at high light.  相似文献   

2.
遮荫对水曲柳和蒙古栎光合、生长和生物量分配的影响   总被引:3,自引:0,他引:3  
为探讨水曲柳(Fraxinus mandshurica)和蒙古栎(Quercus mongolica)苗期对光的适应性及其生长最适光强,设置4种光环境(全光(FL)、75%光(LS)、50%光(MS)、25%光(HS)),观测了2年生水曲柳和蒙古栎苗木气体交换参数、叶绿素含量(Chl)和比叶重(LMA)、生长及生物量的分配。结果表明:随着光强的减弱,2个树种的LMA、单位叶鲜质量(LFA)和根冠比均呈下降趋势;叶绿素含量(Chl)呈上升趋势,且差异显著(p<0.05);光补偿点(LCP)和暗呼吸速率(Rd)呈"N"形变化,但差异均不显著(p>0.05);水曲柳的最大光合速率(Pmax)在HS处理下最大,Rd在HS处理下最小;蒙古栎的最大光合速率(Pmax)在LS处理下最大,Rd也较小;在全光处理下苗高增量均低于HS处理,地径增量均高于HS处理。研究结果进一步确定水曲柳苗期具有一定的耐荫性,在弱光强下生长较好;蒙古栎苗期对光照要求较高,在相对较强光照下生长较好。  相似文献   

3.
Cypripedium guttatum can be found both in open and shady habitats. Photosynthetic acclimation of C. guttatum to different light availabilities was detected using measurements of chlorophyll fluorescence, photosynthesis and leaf traits. When growing under low light conditions, C. guttatum exhibited a greater efficiency in photochemical utilization of absorbed light energy, and a lower ability for non-photochemical dissipation of excess light energy, as compared to the plants growing under high light conditions. Under intermediate light conditions, C. guttatum exhibited higher photosynthetic capacity (A(max)) than those under both low light or high light conditions. The differences in A(max) among three light environments was linked to the differences in biochemical efficiency, leaf N content (LNC) and leaf dry mass per unit area (LMA), but not to the differences of chlorophyll content. However, there were no significant differences in the light compensation points (LCP) and light saturation points (LSP) for photosynthesis for the plants growing under the three light conditions. These results indicate that the photosynthetic capacity of C. guttatum leaves allows for flexible and reversible responses to different irradiance levels. Photosynthetic acclimation in C. guttatum was affected by biochemical changes, the changes in LMA and ratio of Chl a/b. Successful acclimation of C. guttatum to a broad range of light levels likely allows for its wide geographical distribution. A level of about 45% sunlight appears to be optimal for photosynthesis.  相似文献   

4.
以盆栽当年生广西地不容为材料,研究不同光照强度(100%、50%、30%和15%自然光强)对其光合特性和生长的影响。结果表明:随着光照强度的降低,广西地不容最大净光合速率(P_(max))、光饱和点(LSP)、光补偿点(LCP)先减小,而后稍有增大;表观量子效率(AQY)在30%和50%光强下显著高于100%和15%光强处理;叶片叶绿素总量(Chl)、叶绿素a(Chla)、叶绿素b(Chlb)、类胡萝卜素(Car)含量随光强的减弱而增大,Car/Chl随光强的减弱而减小,Chla/Chlb比值在各处理间无显著差异;单叶面积随生长光强的减弱而增大,比叶重(LMA)则随着生长光强的减弱而减小;30%光强下广西地不容块根生物量最高,光照过强和过弱都不利于其生物量的积累。广西地不容对光强的适应范围较广,但光照过强或过荫均对生长造成不良影响,光合速率降低,生长减缓,块根生物量积累下降,30%光强是其当年生苗生长的最佳光强。  相似文献   

5.
There is presently no consensus about the factor(s) driving photosynthetic acclimation and the intra-canopy distribution of leaf characteristics under natural conditions. The impact was tested of local (i) light quality (red/far red ratio), (ii) leaf irradiance (PPFD(i)), and (iii) transpiration rate (E) on total non-structural carbohydrates per leaf area (TNC(a)), TNC-free leaf mass-to-area ratio (LMA), total leaf nitrogen per leaf area (N(a)), photosynthetic capacity (maximum carboxylation rate and light-saturated electron transport rate), and leaf N partitioning between carboxylation and bioenergetics within the foliage of young walnut trees grown outdoors. Light environment (quantity and quality) was controlled by placing individual branches under neutral or green screens during spring growth, and air vapour pressure deficit (VPD) was prescribed and leaf transpiration and photosynthesis measured at branch level by a branch bag technique. Under similar levels of leaf irradiance, low air vapour pressure deficit decreased transpiration rate but did not influence leaf characteristics. Close linear relationships were detected between leaf irradiance and leaf N(a), LMA or photosynthetic capacity, and low R/FR ratio decreased leaf N(a), LMA and photosynthetic capacity. Irradiance and R/FR also influenced the partitioning of leaf nitrogen into carboxylation and electron light transport. Thus, local light level and quality are the major factors driving photosynthetic acclimation and intra-canopy distribution of leaf characteristics, whereas local transpiration rate is of less importance.  相似文献   

6.
The differential pigment composition and photosynthetic activity of sun and shade leaves of deciduous (Acer pseudoplatanus, Fagus sylvatica, Tilia cordata) and coniferous (Abies alba) trees was comparatively determined by studying the photosynthetic rates via CO(2) measurements and also by imaging the Chl fluorescence decrease ratio (R(Fd)), which is an in vivo indicator of the net CO(2) assimilation rates. The thicker sun leaves and needles in all tree species were characterized by a lower specific leaf area, lower water content, higher total chlorophyll (Chl) a+b and total carotenoid (Cars) content per leaf area unit, as well as higher values for the ratio Chl a/b compared to the much thinner shade leaves and needles that possess a higher Chl a+b and Cars content on a dry matter basis and higher values for the weight ratio Chls/Cars. Sun leaves and needles exhibited higher rates of maximum net photosynthetic CO(2) assimilation (P(Nmax)) measured at saturating irradiance associated with higher maximum stomatal conductance for water vapor efflux. The differences in photosynthetic activity between sun and shade leaves and needles could also be sensed via imaging the Chl fluorescence decrease ratio R(Fd), since it linearly correlated to the P(Nmax) rates at saturating irradiance. Chl fluorescence imaging not only provided the possibility to screen the differences in P(N) rates between sun and shade leaves, but in addition permitted detection and quantification of the large gradients in photosynthetic rates across the leaf area existing in sun and shade leaves.  相似文献   

7.
外源甜菜碱对盐胁迫下枸杞光合功能的改善   总被引:63,自引:4,他引:59  
研究了外源甜菜碱对盐胁迫下枸杞扦插苗叶片光合功能的影响。结果表明,外源甜菜碱能使盐胁迫下的枸杞叶片叶绿素荧光动力学参数Fo、Fm、Fv、Fv/Fm、Fm/Fo和Fv/Fo增高,使光合色素叶绿素a(Chla)、叶绿素b(Chlb)和类胡萝卜素(Car)含量明显增加,叶绿素a与b的比值(Chla/Chlb)升高,类胡萝卜素与叶绿素的比值(Car/Chl)降低,说明外源甜菜碱有利于植物对光能的捕获、吸收、传递和转换,提高叶片的光合活性,降低盐胁迫对植物的抑制作用。  相似文献   

8.
研究了西双版纳热带雨林2种喜光树种中平树(Macaranga denticulata)、倒樱木(Pnravallaris macrophylla)和2种耐荫树种云南肉豆蔻(Myristica yunnanensis)、金丝李(Garcinia paucinervis)幼苗叶片光合和形态解剖特征对3种不同生长光强(5%、25%和50%相对光强)的适应。研究结果表明,与强光下相比,弱光下生长的4种植物最大净光合速率、光饱和点、光补偿点、暗呼吸速率、叶绿素a/b、叶片和栅栏组织厚度、气孔密度和比叶重都降低,而海绵组织/栅栏组织和叶绿素含量升高。在相同光强下,与2种耐荫树种相比,2种喜光树种有较大的最大净光合速率、暗呼吸速率、气孔密度和较低的叶绿素含量。在不同光强下,4种植物均表现出了对光适应有利的生理和形态解剖可塑性,而喜光树种比耐荫树种有较大的生理和形态可塑性,表明喜光树种具有比耐荫树种对强光有更强的适应能力。4种植物的生理指标的可塑性均大于叶片解剖结构的可塑性。  相似文献   

9.
To understand the ecophysiological adaptation mechanisms of Calligonum roborovskii to altitude variation, this study analyzed chlorophyll a (Chl a), chlorophyll b (Chl b), Chl (a + b), carotenoid (Car), malondialdehyde (MDA), ascorbate (AsA), proline (Pro), membrane permeability (MP), reactive oxygen species (ROS), specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen content based on mass (Nmass), and the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in leaves of plants inhabiting different altitudes (A1: 2100 m, A2: 2350 m, A3: 2600 m) on the northern slope of the Kunlun Mountains. The results showed that Chl a, Chl b, Chl (a + b), SLA, Nmass, and the activity of CAT increased with increasing altitude. LMA, MP, MDA, Car, Pro, AsA, O2, H2O2 and the activities of SOD, POD, and APX decreased with increasing altitude. The test results also showed that, changes in venvironmental factors along an altitudinal gradient are not obvious. Soil water content is the main ecological factor. With increasing altitude, soil water content increased significantly. More non-enzymatic and enzymatic antioxidants played an important role in eliminating intracellular ROS. They kept the cell membrane in a stable state and ensured the normal growth of C. roborovskii.  相似文献   

10.
测定槐树实生树和嫁接树叶片的光合光响应特性、比叶重和叶绿素含量及枝梢生长的结果表明,嫁接树枝梢基径和高度增长趋势与实生树一致,但嫁接树一次、二次梢基径和高度增长量均大于实生树。嫁接树的最大净光合速率、光饱和点、比叶重和单位重量的叶绿素含量均显著高于实生树,高的光合能力与其单位面积叶片重量增加和单位重量叶绿素含量增高有关。嫁接槐树的类胡萝卜素与叶绿素比值高于实生槐树,叶绿素a,b比值和单位重量类胡萝卜素含量显著高于实生槐树,表明其对强光的适应性强。  相似文献   

11.
Feng  Y.-L.  Cao  K.-F.  Zhang  J.-L. 《Photosynthetica》2004,42(3):431-437
We investigated the effect of growth irradiance (I) on photon-saturated photosynthetic rate (P max), dark respiration rate (R D), carboxylation efficiency (CE), and leaf mass per unit area (LMA) in seedlings of the following four tropical tree species with contrasting shade-tolerance. Anthocephalus chinensis (Rubiaceae) and Linociera insignis (Oleaceae) are light-demanding, Barringtonia macrostachya (Lecythidaceae) and Calophyllum polyanthum (Clusiaceae) are shade-tolerant. Their seedlings were pot-planted under shading nets with 8, 25, and 50 % daylight for five months. With increase of I, all species displayed the trends of increases of LMA, photosynthetic saturation irradiance, and chlorophyll-based P max, and decreases of chlorophyll (Chl) content on both area and mass bases, and mass-based P max, R D, and CE. The area-based P max and CE increased with I for the light-demanders only. Three of the four species significantly increased Chl-based CE with I. This indicated the increase of nitrogen (N) allocation to carboxylation enzyme relative to Chl with I. Compared to the two shade-tolerants, under the same I, the two light-demanders had greater area- and Chl-based P max, photosynthetic saturation irradiance, lower Chl content per unit area, and greater plasticity in LMA and area- or Chl-based P max. Our results support the hypothesis that light-demanding species is more plastic in leaf morphology and physiology than shade-tolerant species, and acclimation to I of tropical seedlings is more associated with leaf morphological adjustment relative to physiology. Leaf nitrogen partitioning between photosynthetic enzymes and Chl also play a role in the acclimation to I.  相似文献   

12.
Mature non-senescent leaves of evergreen species become gradually shaded as new foliage develops and canopy expands, but the interactive effects of integrated light during leaf formation (Q(int)G), current light (Q(int)C) and leaf age on foliage photosynthetic competence are poorly understood. In Quercus ilex L., we measured the responses of leaf structural and physiological variables to Q(int)C and Q(int)G for four leaf age classes. Leaf aging resulted in increases in leaf dry mass per unit area (M(A)), and leaf dry to fresh mass ratio (D(F)) and decreases in N content per dry mass (N(M)). N content per area (N(A)) was independent of age, indicating that decreases in N(M) reflected dilution of leaf N because of accumulation of dry mass (NA = N(M) M(A)). M(A), D(F) and N(A) scaled positively with irradiance, whereas these age-specific correlations were stronger with leaf growth light than with current leaf light. Area-based maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity (V(cmax)A), capacity for photosynthetic electron transport (J(max)A) and the rate of non-photorespiratory respiration in light (R(d)A) were also positively associated with irradiance. Differently from leaf structural characteristics, for all data pooled, these relationships were stronger with current light with little differences among leaves of different age. Acclimation to current leaf light environment was achieved by light-dependent partitioning of N in rate-limiting proteins. Mass-based physiological activities decreased with increasing leaf age, reflecting dilution of leaf N and a larger fraction of non-photosynthetic N in older leaves. This resulted in age-dependent modification of leaf photosynthetic potentials versus N relationships. Internal diffusion conductance (g(m)) per unit area (g(m)A) increased curvilinearly with increasing irradiance for two youngest leaf age classes and was independent of light for older leaves. In contrast, g(m) per dry mass (g(m)M) was negatively associated with light in current-year leaves. Greater photosynthetic potentials and moderate changes in diffusion conductance resulted in greater internal diffusion limitations of photosynthesis in higher light. Both area- and mass-based g(m) decreased with increasing leaf age. The decrease in diffusion conductance was larger than changes in photosynthetic potentials, leading to larger CO2 drawdown from leaf internal air space to chloroplasts (delta(c)) in older leaves. The increases in diffusion limitations in older leaves and at higher light scaled with age- and light-dependent increases in MA and D(F). Overall, our study demonstrates a large potential of foliage photosynthetic acclimation to changes in leaf light environment, but also highlights enhanced structural diffusion limitations in older leaves that result from leaf structural acclimation to previous rather than to current light environment and accumulation of structural compounds with leaf age.  相似文献   

13.
Photosynthesis and resource distribution through plant canopies   总被引:5,自引:0,他引:5  
Plant canopies are characterized by dramatic gradients of light between canopy top and bottom, and interactions between light, temperature and water vapour deficits. This review summarizes current knowledge of potentials and limitations of acclimation of foliage photosynthetic capacity (A(max)) and light-harvesting efficiency to complex environmental gradients within the canopies. Acclimation of A(max) to high light availability involves accumulation of rate-limiting photosynthetic proteins per unit leaf area as the result of increases in leaf thickness in broad-leaved species and volume: total area ratio and mesophyll thickness in species with complex geometry of leaf cross-section. Enhancement of light-harvesting efficiency in low light occurs through increased chlorophyll production per unit dry mass, greater leaf area per unit dry mass investment in leaves and shoot architectural modifications that improve leaf exposure and reduce within-shoot shading. All these acclimation responses vary among species, resulting in species-specific use efficiencies of low and high light. In fast-growing canopies and in evergreen species, where foliage developed and acclimated to a certain light environment becomes shaded by newly developing foliage, leaf senescence, age-dependent changes in cell wall characteristics and limited foliage re-acclimation capacity can constrain adjustment of older leaves to modified light availabilities. The review further demonstrates that leaves in different canopy positions respond differently to dynamic fluctuations in light availability and to multiple environmental stresses. Foliage acclimated to high irradiance respond more plastically to rapid changes in leaf light environment, and is more resistant to co-occurring heat and water stress. However, in higher light, co-occurring stresses can more strongly curb the efficiency of foliage photosynthetic machinery through reductions in internal diffusion conductance to CO(2). This review demonstrates strong foliage potential for acclimation to within-canopy environmental gradients, but also highlights complex constraints on acclimation and foliage functioning resulting from light x foliage age interactions, multiple environmental stresses, dynamic light fluctuations and species-specific leaf and shoot structural constraints.  相似文献   

14.
在原生地和引种地对高山花卉中甸角蒿(1ncarvillea zhongdianensis)光合作用和叶片性状对生长光强的响应进行研究。结果表明:在香格里拉,光合速率(Pn)、类胡萝卜素(Car)、色素比(Chla/b)均随光强的降低而下降;而比叶面积(SLA)、叶绿素b(Chlb)、叶氮含量(LNCa)随光强的降低而上升。中甸角蒿主要是通过叶片形态、生化效率和叶片氮分配来响应生长光强的变化,对生长光强的适应表现出较大可塑性,使得其相对比较容易引种驯化。中甸角蒿在香格里拉对光照具有较广的适应幅,从香格里拉移栽到昆明后,虽然Pn下降约10%,但RGR增加约30%,表明其可以在昆明较好生长。  相似文献   

15.
Rice (Oryza sativa L.) seedlings were grown under NaCl stress. The leaf growth of resistant cv. Damodar was less affected than that of the susceptible cv. Jaya. The leaf protein content showed no distinct cultivar or age dependent differences under NaCl salinity. There was a significant increase in chlorophyll (Chl) and carotenoid (Car) contents of 25-d-oldseedlings of both cv. Jaya and cv. Damodar. However, Chl and Car content of 15-d-old seedlings of cv. Jaya decreased and that of cv. Damodar increased, under NaCl stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Patterns of physiological and architectural adaptation and acclimation to decreasing light availability were investigated along a light gradient for saplings of 12 common species of temperate deciduous trees in southeastern Ontario, Canada. Physiological adaptation and acclimation (shade tolerance physiology) were quantified at the leaf level by measuring leaf mass per unit area (LMA), dark respiration per unit leaf nitrogen, chlorophyll per unit leaf nitrogen and the chlorophyll a:b ratio for the newest fully expanded leaf on the leader. Architectural adaptation and acclimation (shade avoidance) were quantified by measuring branching intensity and side shoot:main shoot length ratios for the most recent three years of growth on the leader and selected side branches. Within species, increases in LMA, chlorophyll a:b ratio and respiration per unit nitrogen and decreases in chlorophyll per unit nitrogen indicated that shade tolerance physiology generally increased with decreasing canopy openness. Increases in the branching intensity and side shoot:main shoot ratios of the leader and side branches indicated that shade avoidance also increased with decreasing canopy openness for the majority of species; however, in some species, stem bending under deep shade resulted in lateral growth. Interspecific variation in shade tolerance physiology was minimal when species were compared under equal amounts of canopy openness. In contrast, interspecific variation in shade avoidance variables was relatively high under equal canopy openness, with saplings of shade tolerant canopy species exhibiting higher shade avoidance than saplings of shade tolerant understory species.  相似文献   

17.
喜光榕树和耐荫榕树光适应机制的差异   总被引:11,自引:0,他引:11  
100%和36%光强下生长的喜光的斜叶榕的光合能力高于耐荫的假斜叶榕,而热耗散能力与之相似,说明强光下斜叶榕主要通过光合作用利用光能和热耗散、假斜叶榕主要通过热耗散防御光破坏.100%光强下生长的两种榕树的日间光抑制程度相似,但叶表光强相同情况下各光强下生长的假斜叶榕的光抑制均比斜叶榕严重.100%光强下假斜叶榕叶片悬挂角大于斜叶榕,导致日间叶表光强低于斜叶榕,这可能是两种榕树日间光抑制程度相似的原因,表明叶片悬挂角的适应变化对假斜叶榕有重要的意义.  相似文献   

18.
This study was performed to evaluate the ecophysiological acclimation of Catalpa bungei plantlets to different light conditions. We hypothesized that the acclimation of old and newly developed leaves to both increasing and decreasing irradiance should follow different patterns. The growth, photosynthesis, chlorophyll (Chl) content, and Chl fluorescence response were examined over a range of light treatments. The plants were grown under fixed light intensities of 80% (HH), 50% (MM), 30% (LL) of sun light and transferring irradiance of 80% to 50% (HM), 80% to 30% (HL), 30% to 50% (LM) and 30% to 80% (LH). For old leaves, light-saturation point, photosynthetic capacity, dark respiration rate of LH were lower than that of HH, while HL were higher than LL, indicating that light-response parameters were affected by the original growth light environment. Initial fluorescence increased and variable fluorescence decreased in LH and LM after transfer, and the PSII damage was more serious in LH than that in LM, and could not recover within 30 d. It suggested that the photoinhibition damage and recovery time in old leaves was related to the intensity of light after transfer. For the newly emerged leaves with leaf primordia formed under the same light environment, a significant difference was observed in leaf morphology and pigment contents, suggesting that previous light environment exhibited carry-over effect on the acclimation capacity to a new light environment. Our result showed that thinning and pruning intensity should be considered in plantation management, because great changes in light intensity may cause photoinhibition in shade-adapted leaves.  相似文献   

19.
黄土高原油松和刺槐叶片光合生理适应性比较   总被引:4,自引:0,他引:4  
以黄土高原地区由南向北分布的杨凌、永寿、富县、安塞、米脂、神木等县为研究地点,研究不同地区油松和刺槐的光合特性与叶结构性状间的关系.结果表明,不同地区油松针叶和刺槐叶片的净光合速率(Pn)、光合氮利用效率(PNUE)、水分利用效率(WUE)、比叶质量(LMA)、氮含量(Nmass)和叶绿素相对含量(Chl)差异均达极显著水平(P<0.001),说明不同地区油松和刺槐的光合能力和叶结构性状参数差异很大.由南向北,油松的Pn、WUE和PNUE呈略微增加趋势,而刺槐则呈显著降低趋势,表明油松在干旱生境下仍能维持较高的光合能力,而刺槐光合能力明显受到抑制;油松和刺槐的LMA均呈略微上升趋势,而Nmass和Chl均呈略微下降趋势,且刺槐的变化幅度高于油松,说明油松从生理代谢和叶结构性状上对干旱环境的适应能力均强于刺槐.相关分析表明,不同地区油松和刺槐的LMA与Nmass整体上呈极显著负相关;Pn、PNUE与LMA、Nmass相关不显著,与Chl呈极显著正相关;WUE与LMA呈显著负相关(P<0.05),与Nmass呈显著正相关.  相似文献   

20.
Changes in pigments contents, leaf area, leaf dry mass per unit area (LMA), photosynthetic rate and chlorophyll a fluorescence were investigated in developing leaves of Fagopyrum dibotrys Hara. mutant. Anthocyanins transiently accumulate below the upper epidermis during leaf ontogeny of this mutant. Red leaves possessed lower Chl content, LMA, photosynthetic rate and apparent carboxylation efficiency than green leaves. However, content of anthocyanins declined and above mentioned parameters increased during further leaf development. In both red and green leaves, chronic photoinhibition did not take place according to variable to maximum chlorophyll fluorescence ratio (Fv/Fm). Red leaves had higher non-photochemical quenching (NPQ) and higher PS 2 efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号