首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A somatic embryogenesis receptor-like kinase (SERK) gene, designated as AcSERK1, was isolated from pineapple (Ananas comosus cv. Shenwan). AcSERK1 shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, transmembrane domain, and kinase domains. Somatic embryogenic cultures of pineapple were established following transfer of callus cultures to Murashige and Skoog (1962) medium containing 2,4-dichlorophenoxyacetic acid. The role of AcSERK1 during establishment of somatic embryogenesis in culture was investigated. The AcSERK1 was highly expressed during embryogenic competence acquisition and global embryo formation in culture. These findings were obtained along with morphological changes in callus cultures exhibiting embryogenic potential. Overall, levels of expression of AcSERK1 were lower in nonembryogenic tissues and organs than in embryogenic callus. In situ hybridization analysis revealed that AcSERK1 expression was detected in embryogenic tissues, including single competent cells, meristematic centers wherein embryogenic structures are formed, and global embryos. These results suggested that AcSERK1 expression was associated with induction of somatic embryogenesis and that it could be used as a potential marker gene to monitor the transition of pineapple callus tissues into competent and embryogenic cells and tissues.  相似文献   

2.
3.

Background and Aims

Understanding the fate and dynamics of cells during callus formation is essential to understanding totipotency and the mechanisms of somatic embryogenesis. Here, the fate of leaf explant cells during the development of embryogenic callus was investigated in the model legume Medicago truncatula.

Methods

Callus development was examined from cultured leaf explants of the highly regenerable genotype Jemalong 2HA (2HA) and from mesophyll protoplasts of 2HA and wild-type Jemalong. Callus development was studied by histology, manipulation of the culture system, detection of early production of reactive oxygen species and visualization of SERK1 (SOMATIC EMBRYO RECEPTOR KINASE1) gene expression.

Key Results

Callus formation in leaf explants initiates at the cut surface and within veins of the explant. The ontogeny of callus development is dominated by the division and differentiation of cells derived from pluripotent procambial cells and from dedifferentiated mesophyll cells. Procambium-derived cells differentiated into vascular tissue and rarely formed somatic embryos, whereas dedifferentiated mesophyll cells were competent to form somatic embryos. Interestingly, explants incubated adaxial-side down had substantially less cell proliferation associated with veins yet produced similar numbers of somatic embryos to explants incubated abaxial-side down. Somatic embryos mostly formed on the explant surface originally in contact with the medium, while in protoplast microcalli, somatic embryos only fully developed once at the surface of the callus. Mesophyll protoplasts of 2HA formed embryogenic callus while Jemalong mesophyll protoplasts produced callus rich in vasculature.

Conclusions

The ontogeny of embryogenic callus in M. truncatula relates to explant orientation and is driven by the dynamics of pluripotent procambial cells, which proliferate and differentiate into vasculature. The ontogeny is also related to de-differentiated mesophyll cells that acquire totipotency and form the majority of embryos. This contrasts with other species where totipotent embryo-forming initials mostly originate from procambial cells.Key words: Callus, dedifferentiation, leaf veins, Medicago truncatula, pluripotency, procambium, protoplasts, reactive oxygen species, SERK, somatic embryogenesis, stem cells, totipotency  相似文献   

4.
5.
Expression of the Agrobacterium rhizogenes rolC gene in Panax ginseng callus cells results in formation of tumors that are capable to form roots. The selection of non-root forming tumor clusters yielded the embryogenic 2c3 callus line, which formed somatic embryos and shoots independently of external growth factors. Although the 2c3 somatic embryos developed through a typical embryogenesis process, they terminated prematurely and repeatedly formed adventitious shoot meristems and embryo-like structures. A part of the shoots and somatic embryos formed enlarged and fasciated meristems. This is the first indication of the rolC gene embryogenic effect and, to our knowledge, the first indication that a single gene of non-plant origin can induce somatic embryogenesis in plants.  相似文献   

6.
以Sb33高粱非胚性、胚性愈伤组织和体胚为材料,用传统石蜡切片法对各组织材料进行组织化学染色,对高粱胚性与非胚性愈伤组织以及体胚进行组织细胞学观察。结果表明:高粱非胚性愈伤组织无淀粉粒积累,高粱胚性愈伤组织淀粉粒积累较多,而与胚性愈伤组织相比,高粱体胚淀粉粒积累更多,这说明淀粉粒的积累与高粱体细胞的胚胎发生密切相关。此外,高粱可通过鱼雷胚基部产生球形胚的方式实现体胚的增殖,高粱离体再生途径以体细胞胚发生为主,并同时存在少量器官发生途径。在高粱体细胞胚胎发生中,外起源和内起源同时存在。本研究为高粱体细胞胚胎发生提供细胞学理论基础。  相似文献   

7.
以欧石楠茎段为外植体,研究其体细胞胚胎发生和植株再生。对影响茎段不定芽分化及胚性愈伤组织诱导的主导因子进行比较分析,并研究其体胚萌发、生根及移栽;同时,采用树脂切片法对茎段脱分化产生胚性愈伤组织及体胚发育过程进行组织细胞学观察。结果表明,接种在1/2WPM基本培养基上的茎段,胚性愈伤组织诱导率为88.7%,显著高于其他处理,不定芽诱导率可达90.6%,平均分化倍数为3.6个,平均分化苗高3.82cm;体细胞经过成熟培养后。在添加1.0mg·L-1 ZT和0.3mg·L-1 IBA的1/2WPM培养基上萌发,萌发的体胚在I/2WPM附加0.2mg·L-1 NAA和0.3mg·L-1 IBA的培养基上形成完整的体胚苗植株,体胚苗生根率达到87.4%,经炼苗后移栽到蛭石:珍珠岩=3:1(V/V)的栽培基质中,成活率可达63.7%。在显微镜下可观察到球形胚、心形胚、鱼雷形胚和子叶形胚;体细胞胚以间接方式发生,表现为愈伤组织外层细胞直接发生和愈伤组织组织内部细胞发生。  相似文献   

8.
Tissue cultures of the halophytic saltmarsh grass Sporobolus virginicus were initiated from unemerged immature inflorescence tissue. Typical graminaceous embryogenic and nonembryogenic callus and cell types were noted. Embryogenic callus was compact golden yellow. Histological evidence indicated that proliferation of the ovary tissue of the immature pistil was the source for embryogenic callus. Plants regenerated after first reducing and then eliminating auxin from the culture medium. Regeneration was observed both through the concerted development of bipolar meristems from somatic embryos and by the formation of multiple shoot meristems that were either connected through callus tissue to root meristems or which later adventitiously rooted. The main mode of regeneration appeared to be somatic embryogenesis with additional multiple shoot formation probably due to precocious germination of somatic embryos. Plants recovered from culture were acclimated to soil, grown up in a greenhouse, and planted in field plots with saline irrigation to ensure stability of salt tolerance.  相似文献   

9.
Somatic embryogenesis involves different molecular events including differential gene expression and various signal transduction pathways. One of the genes identified in early somatic embryogenesis is S OMATIC E MBRYOGENESIS R ECEPTOR-like K INASE (SERK). Cocos nucifera (L.) is one of the most recalcitrant species for in vitro regeneration, achieved so far only through somatic embryogenesis, although just a few embryos could be obtained from a single explant. In order to increase efficiency of this process we need to understand it better. Therefore, the purpose of the present work was to determine if an ortholog of the SERK gene is present in the coconut genome, isolate it and analyze its expression during somatic embryogenesis. The results showed the occurrence of a SERK ortholog referred to as CnSERK. Predicted sequence analysis showed that CnSERK encodes a SERK protein with the domains reported in the SERK proteins in other species. These domains consist of a signal peptide, a leucine zipper domain, five LRR, the Serine-Proline-Proline domain, which is a distinctive domain of the SERK proteins, a single transmembrane domain, the kinase domain with 11 subdomains and the C terminal region. Analysis of its expression showed that it could be detected in embryogenic tissues before embryo development could be observed. In contrast it was not detected or at lower levels in non-embryogenic tissues, thus suggesting that CnSERK expression is associated with induction of somatic embryogenesis and that it could be a potential marker of cells competent to form somatic embryos in coconut tissues cultured in vitro.  相似文献   

10.
11.
Sharma SK  Millam S  Hein I  Bryan GJ 《Planta》2008,228(2):319-330
Somatic embryogenesis offers great potential in plant propagation, long-term germplasm conservation, and as a suitable model system for deciphering early events during embryogenesis. The up-regulation and ectopic expression of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene has been shown to mark and enhance embryogenic competence in somatic cells of model plant species. We have cloned and characterised a SERK gene (StSERK1) from potato (Solanum tuberosum L.), an important crop plant. Sequence analysis of StSERK1 revealed high levels of similarity to other plant SERKs, as well as a conserved intron/exon structure which is unique to members of the SERK family. Furthermore, StSERK clustered most closely with SERK gene family members such as MtSERK1, CuSERK1, AtSERK1, and DcSERK, implicated in evoking somatic embryogenesis. Monitoring of SERK expression during progression of potato somatic embryogenesis revealed increased StSERK expression during the induction phase. Subsequently, during the embryo transition phases, StSERK expression was unchanged and did not vary among embryo-forming and inhibitory conditions. However, in isolated somatic embryos StSERK expression was again up-regulated. In other plant parts (leaves, true potato seeds, microtubers and flower buds), StSERK showed different levels of expression. Expression analysis suggests that the isolated StSERK could be a functional SERK orthologue. The possible role of SERK as a marker of pluripotency, rather than embryogenesis alone, is discussed.  相似文献   

12.
It was shown earlier, that ginseng embryogenic cell culture 2c3 was obtained as a result of callus cells transformation with the Agrobacterium rhizogenes rolC oncogene. In the present report we determine that inhibitors of Ca2+-channels (LaCl3, verapamil, niflumic acid) certainly lowered the quantity of somatic embryos in the 2c3 cell culture. This is the evidence of the influence of calcium-dependent signal system on plant embryogenesis. Protein kinases inhibitors W7 and H7 also caused the lowering of somatic embryos quantity in the 2c3 cell culture. We analysed changes of CDPK genes expression in embryogenic 2c3 cell culture. Total expression decreased 1.2-1.5 times comparing with the control callus culture. CDPK expression in the 2c3 embryogenic culture lowered by the inhibition of expression of the gene subfamilies PgCDPK1 (PgCDPK1a and PgCDPK1b) and PgCDPK3 (PgCDPK3a). At the same time, expression of PgCDPK2 gene subfamily (PgCDPK2b and PgCDPK2d) was increased. We suppose that genes of PgCDPK2 subfamily might be responsible for the embryogenesis initiation in the 2c3 ginseng cell culture. It was shown for the first time that the rolC gene and the process of embryogenesis could change expression of particular forms of CDPK genes.  相似文献   

13.
Camellia nitidissima Chi (Theaceae) is a world-famous economic and ornamental plant with golden-yellow flowers. It has been classified as one of the rarest and most endangered plants in China. Our objective was to induce somatic embryogenesis, shoot organogenesis and plant regeneration for C. nitidissima. Three types of callus (whitish, reddish and yellowish) were induced from immature cotyledons on improved woody plant medium (WPM) with different plant growth regulators (PGRs). Among the callus, whitish callus was induced by 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and reddish and yellowish callus were induced by strongly active cytokinins, thidiazuron (TDZ) or 6-benzylaminopurine (BAP), singly or combined with weakly active auxin, α-naphthaleneacetic acid (NAA). The embryogenic callus could differentiate into somatic embryos, nodular embryogenic structures (large embryo-like structures) or adventitious shoots depending on the PGR used in WPM. BAP was best for adventitious buds and zeatin was best for somatic embryogenesis while kinetin (Kt) was best for the formation of nodular embryogenic structures. The three regeneration pathways often occurred in the same embryogenic callus clumps. Most shoots (80.0%) developed roots in WPM supplemented with 24.6 μM IBA and 0.3 μM NAA while 47.5% of somatic embryos could germinate directly and develop into plantlets on induction medium supplemented with 0.9 μM BAP and 0.1 μM NAA. The nodular embryogenic structures could be sub-cultured and cyclically developed in one of two differentiation pathways: shoot organogenesis or somatic embryogenesis. Plantlets derived from shoot buds rooted and somatic embryos germinated when transplanted into soil in a greenhouse; 66.7% of plantlets from shoot culture and 78.6% of plantlets from somatic embryos survived after 8 weeks’ acclimatization.  相似文献   

14.
The Arabidopsis thaliana primordia timing (pt) mutant was transformed with an AtSERK1::GUS construct. Liquid cultures of this line were used to study the relationship between somatic embryogenesis and the expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (AtSERK1) as a marker for cells competent to form embryos. In order to search for the expression of AtSERK1::GUS during early stages of somatic embryogenesis, histochemical as well as immunochemical approaches were used for the detection of beta-glucuronidase (GUS). Four sites of AtSERK1 expression were found in the embryogenic cultures: in embryogenic callus, where primary somatic embryos developed; in the basal parts of primary somatic embryos; in the outer layers of cotyledons of primary somatic embryos where secondary embryos were formed; and in provascular and vascular strands of developing somatic embryos. The in vitro expression of AtSERK1::GUS coincides with embryogenic development up to the heart-shaped stage. Prior to the expression in embryos, AtSERK1 was expressed in single cells and small cell clusters, indicating that AtSERK1 indeed marks embryogenic competence. Its expression in (pro)vascular strands, suggests that embryogenic cells in tissue culture retain at least in part their original identity.  相似文献   

15.
16.
Root segments from spinach (Spinacia oleracea L. cv. Jiromaru) seedlings form embryogenic callus (EC) that responded to exogenous GA(3) by accumulating a 31-kDa glycoprotein [BP31 or S. oleracea ribosome-inactivating protein (EC 3.2.2.22) (SoRIP1)] in association with the expression of embryogenic potential. Microsequencing of this protein revealed significant similarity with type 1 RIPs. We identified cDNAs for SoRIP1 and S. oleracea RIP2 (SoRIP2), a novel RIP having a consensus shiga/ricin toxic domain and performed a comparative analysis of the expression of SoRIPs during somatic embryogenesis. Western blotting and quantitative polymerase chain reaction analyses revealed that the expression of SoRIP1 in calli increased remarkably in association with the acquisition of embryogenic potential, although the expression in somatic embryos decreased moderately with their development. However, the expression of SoRIP2 in calli remained low and constant but increased markedly with the development of somatic embryos. Treatment of callus with GA(3) and/or ABA for 24 h, or with ABA for a longer period, failed to stimulate the expression of either gene. Immunohistochemistry showed that SoRIP1 preferentially accumulated in the proembryos and peripheral meristem of somatic embryos early in development. Appreciable expression of SoRIP2 was not detected in the callus, but intense expression was found in the epidermis of somatic embryos. These results suggest that the expression of spinach RIP genes is differentially regulated in a development-dependent fashion during somatic embryogenesis in spinach.  相似文献   

17.
Summary In oak species, there is paucity of information on the anatomical changes underlying differentiation of somatic embryos from explants of mature trees. A histological study was undertaken to ascertain the cellular origin and ontogenesis of somatic embryos in leaf cultures from a 100-yr-old Quercus robur tree. Somatic embryogenesis was induced in expanding leaves excised from shoots forced from branch segments, following culture on three successive media containing different concentrations of α-naphthaleneacetic acid and 6-benzylaminopurine. The somatic embryogenesis followed an indirect pathway from a callus tissue formed in the leaf lamina. After 4–6 wk of culture, meristematic cells originated in superficial layers of callus protuberances, but these cells evolved into differentiated vacuolated cells rather than embryos. A subsequent dedifferentiation into embryogenic cells occurred later (9–12 wk of culture) within a dissociating callus. Embryogenic cells exhibited dense protein-rich protoplasm, high nucleoplasmic ratio, and contained small starch grains. Successive divisions of these cells led to the formation of a few-celled proembryos and embryogenic cell clumps within a thick common cell wall, which seemed to have originated unicellularly. However, a multicellular origin of larger embryogenic clumps could not be dismissed; these gave rise to embryonic nodular structures that developed somatic embryos of both uni- and multicellular origin. Somatic embryos at successive stages of development, including cotyledonary-stage embryos with shoot and root meristems, were apparent.  相似文献   

18.
The isolation and expression analysis of four partial gene sequences from rose (Rosa hybrida cv. Linda) belonging to the receptor-like kinase gene superfamily are reported. These genes have been designated RhSERK1 to RhSERK4 (Accession No. EF631967 to EF631970) as they exhibit high sequence identities with genes from the somatic embryogenesis receptor-like kinase (SERK) family in other plant species. The RhSERK genes are differentially expressed in non-embryogenic callus, embryogenic callus, mature somatic embryos and a range of tissues from intact plants, indicating a broad role in plant growth and development. However, the expressions of RhSERK3 and RhSERK4 were approximately fivefold higher in embryogenic callus than in non-embryogenic callus, and they are even higher when compared to tissues from intact plants. In addition, RhSERK4 expression was approximately eightfold higher in somatic embryos than in embryogenic callus. These results suggest that the expression pattern of RhSERK3 and RhSERK4 may be used as a marker of somatic embryogenesis.  相似文献   

19.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号