首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fattiness is an important parameter to estimate meat quality, which has high heritability. In this experiment, F2 chickens derived from Broilers crossing to Silky were used to study the effect of extracellular fatty acid binding protein (EX-FABP) gene on abdominal fat accumulation. 1.6 kb of the 5′ region of the gene was amplified by six pairs of primers, and then single nucleotide polymorphisms (SNPs) were detected by the technique of single strand conformation polymorphism (SSCP) and then confirmed by sequencing. There were four nucleotides variations found, A-G at-1807, C-A at -1805, T-C at -1011 and a C insertion at -1000 respectively. The result of least square analysis suggests that the birds with BB genotype defined by the second pair of primer have a higher abdominal fat weight and abdominal fat percentage than the birds with the other genotypes (AA and AB). It implied that EX-FABP gene could be a candidate locus or linked to a major gene to significantly affect abdominal fat traits in chicken.  相似文献   

2.
关洪英  唐志权  李辉 《遗传学报》2006,33(6):501-506
苹果酸脱氢酶(Malate Dehydrogenase,MD)是一种氧化还原性酶,参与体内多种能量代谢反应.它可以催化苹果酸氧化脱羧生成丙酮酸和CO2,并使NADP+还原成NADPH,NADPH是脂肪酸合成所必需的载体,棕榈酸可以利用生成的NADPH来合成长链脂肪酸,MD的活性与脂肪酸合成效率之间存在密切的相关,MD也参与体内骨骼肌、心肌的能量代谢,并对肌纤维的生长有一定的调节作用.根据鸡MD基因的5侧翼区序列设计一对引物,用直接测序的方法在侧翼区检测多态性位点,在235bp(GenBank登录号U49693)处发现一个SNP位点,此位点是一个限制性内切酶(SphⅠ酶)发生变化的位点.以东北农业大学高低脂双向选择系的第8世代肉鸡和东农F2资源群体为实验材料,用PCR-RFLP的方法进行基因型分析,建立适合的统计模型,进行基因型与生长和体组成性状的相关分析.结果表明在高低脂系第8世代肉鸡中AA基因型个体的腹脂重和腹脂率显著高于BB基因型个体(P<0.05);BB基因型个体的大胸肌重和大胸肌率显著高于AA基因型个体(P<0.05).在东农F2资源家系中BB基因型个体的大胸肌重和大胸肌率显著高于AA和AB基因型个体(P<0.05);AA基因型个体的肝脏重和肝脏率显著高于BB基因型个体(P<0.05).综上所述,MD基因可能是影响鸡生长和体组成性状的主效基因或与控制生长和体组成性状的主效基因相连锁.  相似文献   

3.
赵小玲  刘益平  李亮  蒋小松  杜华锐  朱庆 《遗传》2007,29(12):1483-1483―1490
对脂肪分化相关蛋白(Adipocyte Differentiation-Related Protein, ADFP)基因的外显子进行SNPs 检测, 探讨其作为鸡脂肪性状候选基因的可能性。实验以四川省畜牧科学研究院和大恒家禽育种有限公司培育的优质肉鸡新品系为素材, 采用PCR-SSCP的方法进行SNPs 检测和基因型的分析。结果找到3个SNPs位点: 4 079位由A→T(位点A)、4 843位由C→T(位点B)和7 070位由A→G(位点C)。单位点基因型对屠宰性状的遗传效应分析表明, 位点A的基因型对腿肌率、腹脂重、腹脂率和肌内脂肪含量有显著性影响(P < 0.05), 位点B的基因型对活重和屠体重均有显著性影响(P < 0.05), 位点C的基因型对胸肌重和肌内脂肪含量有显著性影响(P < 0.05), 对胸肌率有极显著性影响(P < 0.01)。初步推断ADFP基因可能是影响鸡脂肪性状的主效基因或与主效基因连锁, 推测可以利用多态位点A和C对鸡腹脂重、腹脂率和肌内脂肪含量进行标记辅助选择。  相似文献   

4.
以东北农业大学高低脂双向选择系的第 6世代肉鸡为材料 ,鸡 7周龄时测定体重和腹脂重等屠体性状。根据鸡瘦蛋白受体基因内含子 8的序列 (GenBank登陆号 :AF2 2 2 783 )设计引物 ,用直接测序的方法检测多态性位点 ,用PCR SSCP的方法进行基因型分析 ,建立适合的统计模型对多态性位点产生的基因型与生长和体组成性状进行相关分析。结果表明 ,在第 50 0和 659位碱基同时发生了T—C、G—A突变。经最小二乘分析 ,3种基因型在腹脂重和腹脂率上差异显著 (P <0 0 5) ,BB型个体腹脂重和腹脂率显著高于AB型 (P <0 0 5) ,极显著地高于AA型个体 (P <0 0 1) ;3种基因型在肝重上差异显著 (P <0 0 5) ,且AA基因型个体的肝重显著低于AB和BB基因型个体。初步推断OBR基因可能是影响鸡脂肪性状的主效基因或与主效基因连锁 ,推测可以利用这个多态位点对鸡的体脂性状进行标记辅助选择  相似文献   

5.
Malate dehydrogenase (MD) is a key enzyme that plays an important role in energy metabolism. It catalyzes the oxidative decarboxylation of L-malate to yield CO2 and pyruvate, while simultaneously generating NADPH from NADP+. The NADPH generated can be utilized in de novo synthesis of palmitate, which is the precursor molecule for the formation of other long-chain fatty acids. And high levels of MD will also activate muscle development. The current study was designed to investigate the effects of MD gene on growth and body-composition traits in chicken. The eighth generation population of Northeast Agricultural University broiler lines divergently selected for its abdominal fat and Northeast Agricultural University F2 resource population were used in the research. Polymorphisms were detected by DNA sequencing and PCR-RFLP method was then developed to screen the population. A single mutation at the position of the 235 bp (Accession No. U49693) of MD 5′-flanking region was found. The correlation analysis between the polymorphism of the MD gene and growth and body composition traits was carried out using the appropriate statistic model. Least-square analysis showed that the BB genotype birds had much higher pectoralis major weight and percentage of pectoralis major than AA genotype birds (P<0.05). The abdominal fat weight, percentage of abdominal fat, the liver weight and percentage of liver weight of the AA genotype birds were much higher than those of BB genotype birds (P<0.05). These results indicate that MD gene is the major gene or is linked to the major gene that affects the growth and body composition traits in chicken.  相似文献   

6.
The selection of meat-type chickens (broilers) for rapid growth has been accompanied by excessive fat deposition. In this study, we analysed 53 candidate genes that are associated with obesity and obesity-related traits in humans, for which we found chicken orthologues by BLAST searches. We have identified single nucleotide polymorphisms (SNPs) with significant differences in allele frequencies between broilers and layers in each of the following six candidate genes: adrenergic, beta-2-, receptor, surface (ADRB2); melanocortin 5 receptor (MC5R); leptin receptor (LEPR), McKusick-Kaufman syndrome (MKKS), milk fat globule-EGF factor 8 protein (MFGE8) and adenylate kinase 1 (AK1). To examine associations with fatness and/or body weight, we used birds of extreme phenotypes in F(2) and backcross populations with varying levels of abdominal fat weight per cent (%AFW) and body weight. We then assessed the level of gene expression by real-time PCR. In two genes, ADRB2 and MFGE8, we found significant association with %AFW. The ADRB2 gene was found to have a significantly higher expression in the liver of lean chickens compared with those of the fat individuals. We believe that this approach can be applied for the identification of other quantitative genes.  相似文献   

7.
Divergent selection of chickens for low or high abdominal fat (AF) but similar BW at 63 days of age was undertaken in 1977. The selection programme was conducted over seven successive generations. The difference between lines was then maintained constant at about twice the AF in the fat line as in the lean line. The aims of the first studies on these divergent chicken lines were to describe the growth, body composition and reproductive performance in young and adult birds. The lines were then used to improve the understanding of the relationship between fatness and energy and protein metabolism in the liver, muscle and adipose tissues, as well as the regulation of such metabolism at hormonal, gene and hypothalamic levels. The effects on muscle energy metabolism in relation to meat quality parameters were also described. This paper reviews the main results obtained with these lines.  相似文献   

8.
The quantitative traits of mass and percentage of abdominal fat in chicken and various types of obesity in mammals are homologous and functionally similar. Therefore, the genes involved in obesity development in humans and laboratory rodents as well as those responsible for pig lard thickness could be involved in abdominal fat deposition in broilers. Expression of candidate genes FABP1, FABP2, FABP3, HMGA1, MC4R, PPARG, PPARGC1A, POMC and PTPN1 was studied in fat, liver, colon, muscle, hypophysis, and brain in chicken (broilers) using real-time PCR. Significant difference in the HMGA1 gene expression in the liver of broiler chicken with high (3.5 +/- 0.18%) and low (1.9 +/- 0.56%) abdominal fat concentration has been revealed. The expression of this gene was been shown to correlate with the amount (0.7, P < or = 0.01) and mass (0.7, P < or = 0.01) of abdominal fat. The PPARG gene expression in liver in the same chicken subsets was also significantly different. Correlation coefficients of the gene expression with the abdominal fat amount and mass were respectively 0.55 (P < or = 0.05) and 0.57 (P < or = 0.01). Based on these results, we suggest that the HMGA1 and PPARG genes are involved in abdominal fat deposition. The search for single nucleotide polymorphisms (SNPs) in the HMGA and PPARG regulatory regions could facilitate identifying genetic markers for broiler breeding according to the mass and percentage of abdominal fat.  相似文献   

9.
10.
11.
Myostatin, a new member of the TGF-p superfamily, is predominantly expressed in skeletal muscle cells and functions as a negative regulator of skeletal muscle growth in animals. Recently, we have reported three single nucleotide polymorphisms (SNPs) in the chicken my-ostatin gene. Herein, we investigate the association of those SNPs with the production traits in a F2 chicken line derived from Broilers crossing to Silky with the least square analysis. The results show that the BB and AA genotypes are strongly associated with abdominal fat weight (AFW), abdominal fat percentage (AFP), and birth weight (BW) (P < 0.05). Breast muscle percentage (BMP) of the AA type is higher than that of the AB type. The breast muscle weight and breast muscle percentages of F2 individuals have significant difference between CC and DD genotypes (P< 0.05). Breast muscle weight (BMW) of EF birds is higher than that of EE birds (P< 0.05). In this report, we present the first genetic evidence to show that chicken myostatin not o  相似文献   

12.
鸡A-FABP基因多态性分析及其与脂肪性状的   总被引:14,自引:0,他引:14  
以北京油鸡为试验材料,对A-FABP基因进行单核苷酸多态性(SNPs)检测和基因型与性状的关联分析。方差分析结果表明,不同基因型间腹脂率、皮脂厚、肌内脂肪含量差异极显著(P<0.01),体重在不同基因型间差异不显著(P >0.05)。由此推测,A-FABP可能为影响鸡脂肪代谢的主效基因或与主效基因相连锁。  相似文献   

13.
The effects of obesity on reproduction have been widely reported in humans and mice. The present study was designed to compare the reproductive performance of lean and fat chicken lines, divergently selected for abdominal fat content. The following parameters were determined and analyzed in the two lines: (1) reproductive traits, including age at first egg and total egg numbers from generations 14 to 18, absolute and relative testicular weights at 7, 14, 25, 30, 45 and 56 weeks of age, semen quality at 30, 45 and 56 weeks of age in generation 18, and fertility and hatchability from generations 14 to 18; (2) reproductive hormones at 7, 14, 25, 30, 45 and 56 weeks of age in generation 18; (3) and the relative mRNA abundance of genes involved in reproduction at 7, 14, 25, 30, 45 and 56 weeks of age in generation 18. In females, birds in the lean line laid more eggs from the first egg to 40 weeks of age than the birds in the fat line. In male broilers, the birds in the lean line had higher absolute and relative testicular weights at 7, 14 and 25 weeks of age, but lower absolute and relative testicular weights at 56 weeks of age than the birds in the fat line. Male birds in the lean line had greater sperm concentrations and larger numbers of motile and morphologically normal sperms at 30, 45 and 56 weeks of age than the birds in the fat line. Fertility and hatchability were also higher in the lean line than in the fat line. Significant differences in the plasma levels of reproductive hormones and the expression of reproduction-associated genes were also found at different ages in the lean and fat birds, in both males and females. These results suggest that reproductive performance is better in lean birds than in fat birds. In view of the unique divergent lines used in this study, these results imply that selecting for abdominal fat deposition negatively affects the reproductive performance of birds.  相似文献   

14.
鸡PPARγ基因的表达特性及其对脂肪细胞增殖分化的影响   总被引:1,自引:0,他引:1  
为分析鸡PPARγ基因的组织表达特性及其在脂肪细胞增殖和分化过程中的功能,文章以东北农业大学高、低腹脂双向选择品系肉鸡为实验材料,利用Western blotting方法,检测PPARγ基因的组织表达特性及其在高、低脂系肉鸡腹部脂肪组织间的表达差异;采用RNAi技术,在鸡原代脂肪细胞中抑制PPARγ基因的表达后,通过MTT和油红O提取比色的方法,研究鸡PPARγ基因对脂肪细胞增殖和分化的调控作用;利用Real-timePCR和Western blotting技术,分析PPARγ基因表达下调后,其他脂肪细胞分化转录因子以及与脂肪细胞分化相关的重要基因的表达变化情况。结果表明,PPARγ基因在7周龄高脂系肉鸡腹部脂肪组织、肌胃、脾脏、肾脏组织中表达量较高,在心脏中表达量较低,在肝脏、胸肌、腿肌、十二指肠中未检测到表达信号;与高脂系相比,PPARγ基因在5和7周龄低脂系肉鸡腹部脂肪组织中的表达量较低(P<0.05);PPARγ基因的表达量下降后,鸡脂肪细胞的增殖能力增强,分化能力减弱;同时,C/EBPα、SREBP1、A-FABP、Perilipin1、LPL、IGFBP-2基因的表达量均下降(P<0.05)。由此可见,PPARγ基因的表达可能与肉鸡腹部脂肪的沉积有一定的关系,该基因可能是调控鸡脂肪细胞增殖与分化的关键因子。  相似文献   

15.
16.
Previous results from genome wide association studies (GWASs) in chickens divergently selected for abdominal fat content of Northeast Agricultural University (NEAUHLF) showed that many single nucleotide polymorphism (SNP) variants were associated with abdominal fat content. Of them, six top significant SNPs at the genome level were located within SRD5A3, SGCZ, DLC1, GBE1, GALNT9 and DNAJB6 genes. Here, expression levels of these six candidate genes were investigated in abdominal fat and liver tissue between fat and lean broilers from the 14th generation population of NEAUHLF. The results showed that expression levels of SRD5A3, SGCZ and DNAJB6 in the abdominal fat and SRD5A3, DLC1, GALNT9, DNAJB6 and GBE1 in the liver tissue differed significantly between the fat and lean birds, and were correlated with abdominal fat traits. The findings will provide important references for further function investigation of the six candidate genes involved in abdominal fat deposition in chickens.  相似文献   

17.
Preen gland secretions were obtained from several hens that were rearing their chicks and the content of these secretions was analysed. From these results, a synthetic analogue of the secretions was created (given the title Mother Hen Uropygial Secretion Analogue, or MHUSA, in this study). According to a blinded, controlled experimental design, heavy broilers (strain SASSO T56N) were reared from 1 day of age in an environment treated with either MHUSA or control. At 80 days the birds were slaughtered. Post mortemcarcass weight, abdominal fat and fillet weights were then measured. Colour, pH and yield were also measured as indicators of meat quality. Broilers exposed to MHUSA had both higher carcass weights and higher fillet weights compared with control-treated birds (P < 0.05). Abdominal fat, pH, water loss and colorimetry results were similar between the treatment groups at all time points (24 h and 6 days post mortem) and also after a cooking procedure. The meat from the MHUSA birds was less yellow compared with control. It is concluded that constant exposure to MHUSA from rearing until slaughter improves growth rate in broilers without significantly affecting meat quality.  相似文献   

18.
Myostatin, a new member of the TGF-ß superfamily, is predominantly expressed in skeletal muscle cells and functions as a negative regulator of skeletal muscle growth in animals. Recently, we have reported three single nucleotide polymorphisms (SNPs) in the chicken myostatin gene. Herein, we investigate the association of those SNPs with the production traits in a F2 chicken line derived from Broilers crossing to Silky with the least square analysis. The results show that the BB and AA genotypes are strongly associated with abdominal fat weight (AFW), abdominal fat percentage (AFP), and birth weight (BW) (P < 0.05). Breast muscle percentage (BMP) of the AA type is higher than that of the AB type. The breast muscle weight and breast muscle percentages of F2 individuals have significant difference between CC and DD genotypes (P < 0.05). Breast muscle weight (BMW) of EF birds is higher than that of EE birds (P < 0.05). In this report, we present the first genetic evidence to show that chicken myostatin not only plays an important role in controlling skeletal muscle growth and differentiation, but also may be involved in regulation of adipose growth in chicken.  相似文献   

19.
During migration, birds undergo alternating periods of fasting and re-feeding that are associated with dynamic changes in body mass (m(b)) and in organ size, including that of the digestive tract. After arrival at a migratory stopover site, following a long flight, a bird must restore the tissues of its digestive tract before it can refuel. In the present study we examined how the availability of dietary protein influences refueling of migrating blackcaps (Sylvia atricapilla) during a migratory stopover. We tested the following predictions in blackcaps deprived of food and water for 1-2 days to induce stopover behavior: (1) birds provided with a low-protein diet will gain m(b), lean mass and fat mass, and increase in pectoral muscle size slower than do birds fed a high-protein diet; (2) since stopover time is shorter in spring, birds will gain m(b) and build up fat tissue and lean tissue faster than in autumn; and (3) if low dietary protein limits a bird's ability to gain m(b) and fat reserves, then birds that do not obtain enough protein will initiate migratory restlessness (Zugunruhe) earlier than will birds with adequate dietary protein. These predictions were tested by providing captured migrating blackcaps with semisynthetic isocaloric diets differing only in their protein content. Each day, we measured m(b), and food intake; also lean mass and fat mass were measured using dual energy X-ray absorptiometry. In addition, we monitored nocturnal activity with a video recording system. In both spring and autumn, birds fed diets containing either 3 or 20% protein increased in m(b), lean mass and fat mass at similar rates during the experiment. However, the group receiving 3% protein ate more than did the group receiving 20% protein. In support of our predictions, m(b), lean mass, fat mass, and intake of food all were higher in spring than in autumn. We also found that in spring all birds had higher levels of migratory restlessness, but birds fed 3% protein were less active at night than were birds fed 20% protein, possibly an adaptation conserving energy and protein. We conclude that protein requirements of migrating blackcaps during stopover are lower than expected, and that birds can compensate for low dietary protein by behavioral responses, i.e. hyperphagia and decreased migratory restlessness, that ensure rapid refueling.  相似文献   

20.
On their way from the wintering area to the breeding grounds in Spitsbergen, barnacle geese Branta leucopsis stage on islands off the coast of Norway. The aim of this study was to describe when the geese migrate in relation to the body stores deposited and explore questions related to the concept of optimal migration schedules and on the possible mechanisms involved. We estimated fat stores by repeated assessments of the abdominal profile index of individually marked females throughout staging. Reproductive success was derived from observations of the same individuals later in the annual cycle. Females arriving late, or with low fat stores at arrival, achieved higher fat deposition rates, probably by spending more time foraging. But they were unable to match final fat scores of birds that arrived earlier or with larger fat stores. Reproductive success was correlated with the timing of migration and individuals departing at intermediate dates achieved highest success. The exact date of peak reproductive success depended on the size of fat stores accumulated, such that low-quality birds (depositing less fat) benefited most from an early departure to the breeding grounds. Observations in the breeding colonies showed that these birds did not initiate a nest earlier but they spent a longer time in Spitsbergen before settling. The length of stay in Norway was close to the prediction derived from an optimisation model relating spring events to eventual breeding success. Poorest performing birds stayed longer than expected, perhaps depositing more fat to avoid the risk of starvation. Two possible mechanisms of the timing of migration were contrasted and it seemed that the geese departed for migration as soon as they were unable to accumulate any more fat stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号