首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的 探索新的抗氧化剂.方法 研究萝卜过氧化物酶(POD)对小鼠肝、脾和肾脏超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)的影响.结果 用不同剂量的POD处理后,可以提高肝、脾和肾的SOD、GSH-Px的活性,减低丙二醛的含量.结论 萝卜过氧化物酶可以提高机体的抗氧化能力.  相似文献   

2.
在实验条件下,将健康性成熟雄性长江华溪蟹Sinopotamon yangtsekiense暴露于0、7.25、14.5、29、58和116 mg/L浓度的镉(Cd2+)溶液中,分别于1 d、3 d、5 d和7 d时测定精巢中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氧酶(CAT)活性及脂质过氧化产物丙二醛(MDA)的含量.结果显示,不同时间段3种酶活性和MDA含量均具有浓度和时间效应关系,表明急性镉暴露对精巢有明显的毒性作用,其作用机制与抗氧化酶活力变化和脂质过氧化加剧有关.  相似文献   

3.
魔芋葡甘低聚糖对小鼠抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
研究魔芋葡甘低聚糖对小鼠血浆和肝脏中抗氧化酶活性的影响。魔芋葡甘低聚糖能有效地降低肝脏中丙二醛(MDA)的含量,提高肝脏和血浆中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)的活性。尤以高剂量组效果最好。  相似文献   

4.
目的:研究沙棘油对6周递增负荷运动训练大鼠心肌及肝脏自由基的影响。方法:通过对运动大鼠按一定方式分组实验,选取心脏及肝脏的超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)四个抗氧化指标进行测试。结果:运动训练后灌胃沙棘油能显著提高大鼠心肌及肝脏中超氧化物歧化酶,谷胱甘肽过氧化物酶以及过氧化氢酶的活性,并能显著降低丙二醛的含量。结论:证实了沙棘油具有增强抗氧化酶活性和提高大鼠运动能力的作用。  相似文献   

5.
黄芪多糖对泌乳期奶牛抗氧化能力的影响   总被引:1,自引:0,他引:1  
本实验旨在研究黄芪多糖对泌乳期荷斯坦奶牛抗氧化能力的影响。试验选取年龄、胎次和体重接近的泌乳期荷斯坦奶牛35头,随机分为5组(每组7头),各组每天分别在精料中添加0、5、10、50、100 g黄芪多糖,连续饲喂14 d。分别在第0、14和24 d采血测定血清总抗氧化能力(total antioxidant capacity,T-AOC)、超氧化物歧化酶(superoxide dismutase,SOD)活性、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性及丙二醛(malondialdehyde,MDA)含量。结果显示:在日粮中添加适量的黄芪多糖显著提高(P0.05)泌乳期奶牛血清总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)活性和谷胱甘肽过氧化物酶(GSH-Px)活性,同时显著降低(P0.05)血清中丙二醛(MDA)的含量。结果表明,日粮中添加黄芪多糖有提高泌乳期奶牛抗氧化能力的作用,适宜添加剂量在10 g~50 g/头·d。  相似文献   

6.
壳聚糖对肉鸡抗氧化能力及生产性能的作用   总被引:1,自引:0,他引:1  
为了探讨壳聚糖对家禽肉鸡抗氧化能力及生产性能的作用,采用1日龄黑脚大麻鸡6组各100只进行分组实验,喂食壳聚糖复合剂,测定了肉鸡血清中超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量、谷胱甘肽过氧化物酶(GSH-PX)活力、免疫器官指数、腹脂率和料重比等指标。结果表明:2种分子量的壳聚糖在较低浓度时能显著提高60日龄肉鸡血清中SOD的酶活力(P〈0.05),但对其他日龄肉鸡血清中SOD酶活力影响不显著;壳聚糖对血清中MDA含量和GSH-PX酶活力影响不显著;实验组的存活率提高,腹脂率和料重比稍有下降。在肉鸡饲养中,壳聚糖是一种潜在的、绿色的抗生素替代品。  相似文献   

7.
王倩  孙胜男  赵文阁  于东 《动物学杂志》2017,52(6):1003-1014
为了研究阿特拉津和毒死蜱单一及联合暴露对东北小鲵(Hynobius leechii)蝌蚪抗氧化酶活性的影响,实验选择不同浓度、不同时间点阿特拉津和毒死蜱单一及联合暴露对东北小鲵蝌蚪超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)及丙二醛(MDA)的影响。结果表明,随着暴露时间的增加及各处理组浓度的升高,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)活性明显降低,丙二醛(MDA)水平明显上升,从而说明阿特拉津和毒死蜱单一及联合暴露会对东北小鲵蝌蚪的抗氧化酶系活性产生影响,进而产生毒理效应。当暴露21 d后,通过恢复实验,发现恢复末期与暴露末期相比,低浓度组和中浓度组上述3种酶活性变化不显著,而高浓度组上述3酶活性均有明显改善。  相似文献   

8.
黄瓜叶片衰老过程中抗坏血酸含量与生理指标关系的研究   总被引:3,自引:0,他引:3  
研究了黄瓜叶片衰老过程中抗坏血酸(ASA)含量及相关生理指标的变化,进一步分析了ASA与各相关生理指标之间的关系。结果显示,随着叶片逐渐衰老,丙二醛(MDA)含量、相对电导率(REC)及过氧化物酶(POD)活性显著升高;光合色素、可溶性蛋白质含量、超氧化物歧化酶(SOD)与过氧化氢酶(CAT)活性及ASA含量显著降低;ASA与MDA含量、REC、POD活性之间呈显著负相关关系,ASA与CAT及SOD活性之间呈显著正相关关系。研究表明,ASA对减缓叶片衰老有重要作用。  相似文献   

9.
目的:研究大豆卵磷脂的抗疲劳及抗氧化作用。方法:小鼠经口给予大豆卵磷脂30天后,采用负重游泳实验,观察记录小鼠游泳死亡时间;检测血清尿素氮、肝糖原;测定血清和肝匀浆超氧化物歧化酶(SOD)活性、谷胱甘肽过氧化物酶(GSH-Px)活力、丙二醛(MDA)含量。结果:给予大豆卵磷脂后,与对照组相比,实验组小鼠负重游泳时间明显延长,肝糖原消耗量减少,降低运动后血清尿素氮水平(P<0.05);升高小鼠血清和肝匀浆SOD活性及GSH-Px活力,降低MDA的含量(P<0.05)。结论:大豆卵磷脂具有抗疲劳和抗氧化作用。  相似文献   

10.
目的 探讨交感神经对青年和老龄小鼠小肠上皮细胞增殖的影响。方法 腹腔注射6-羟多巴胺(6-OHDA)阻断交感神经,用石蜡组织切片和HE染色检测绒毛长度、隐窝深度及两者比值,用免疫组织化学检测增殖细胞核抗原(PCNA)在肠腺中的表达,用试剂盒检测总抗氧化能力(T-AOC)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)等指标。结果 化学性阻断交感神经,在3月龄和18月龄鼠中小肠绒毛长度、V/C比值、小肠肠上皮细胞PCNA表达水平均下降显著,小肠SOD、T-AOC降低,MDA升高。结论 交感神经均能促进3月龄和18月龄鼠小肠上皮细胞的增殖,其中对3月龄小鼠的作用大于18月龄小鼠。  相似文献   

11.
黑斑蛙精巢MDA和抗氧化酶对铅、镉暴露的生态毒性响应   总被引:3,自引:0,他引:3  
施蔡雷  张杭君  贾秀英 《生态学报》2010,30(13):3569-3574
以健康性成熟黑斑蛙为供试动物,以精巢组织丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性为指标,进行了水体铅、镉暴露的生态毒性响应研究.结果表明:(1)精巢MDA含量随铅、镉暴露浓度的升高而明显增加,且呈明显的浓度-效应关系.说明低水平铅、镉的长期暴露对黑斑蛙精巢具有一定的损伤作用;(2)SOD活性在各处理组响应变化不明显,CAT、GSH-Px活性则被显著诱导,说明GSH-Px、CAT在铅、镉引起的精巢抗氧化损伤中起着重要作用;(3)3种抗氧化酶相比,GSH-Px活性对铅、镉暴露响应最敏感,SOD活性的响应最不明显,精巢GSH-Px活性是指示铅、镉暴露的优选生物标志物。  相似文献   

12.
Glutathione peroxidase (GSh-Px), superoxide dismutase (SOD), catalase (CAT) activities and malon-dialdehyde (MDA) content were determined in heart, liver, kidney and brain of rats. Two different age groups (4 months; 24 months) were considered. GSH-Px and SOD activities decrease significantly for the aged liver and kidney. During aging, the activity of catalase increase in cardiac muscle and, in contrast, decrease in other organs. Lipids peroxidation, expressed in term of MDA formation, decrease in all the organs of the aged rats. The results indicate that: 1) the liver and kidney antioxidative defense decrease with age; 2) the enzymatic activities evolve in a different manner for different enzymes and organs. Furthermore, the results suggest that there is not any correlation between the SOD, CAT, and GSH-Px activities and the peroxidative status of the organs; thus, the age-related increase in the MDA content proposed as a criterion of aging process should be considered with caution.  相似文献   

13.
This study was undertaken to investigate the protective effects of melatonin against formaldehyde-induced neurotoxicity in prefrontal cortex of rats. For this purpose, 21 male Wistar rats were divided into three groups. The rats in Group I were used as a control, while the rats in Group II were injected every other day with formaldehyde. The rats in Group III received melatonin daily while exposed to formaldehyde. At the end of 14-day experimental period, all rats were killed by decapitation. The brains of the rats were removed and the prefrontal cortex tissues were obtained from all brain specimens. Some of the prefrontal cortex tissue specimens were used for determination of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels. The remaining prefrontal cortex tissue specimens were used for immunohistochemical evaluation. The levels of SOD and GSH-Px were significantly decreased, and MDA levels, were significantly increased in rats treated with formaldehyde compared with those of the controls. In the immunohistochemical evaluation of this group, apoptotic cells were observed. However, increased SOD and GSH-Px enzyme activities, and decreased MDA levels, were detected in the rats administered melatonin while exposed to formaldehyde. Furthermore, apoptotic changes caused by formaldehyde were decreased in these rats. The results of our study suggest that melatonin treatment prevents formaldehyde-induced neuronal damage in prefrontal cortex.  相似文献   

14.
The effects of age and hypertension on the antioxidant defence systems and the lipid peroxidation in rat isolated hepatocytes were studied. Four different age groups (1,3,6 and 12 months) were considered in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. Age-associated changes were observed on vitamin E status, glutathione (GSH) level, MDA formation and glutathione peroxidase (GSH-Px) activity in both strains. Maximal levels or activities of these parameters were found at 3 and 6 months, except for MDA which was low at 3 months. Then, a fall was observed at 12-month-old compared to 6-month values. In addition, GSH-Px activity was significantly lower in SHR than in WKY rats, except at the age of one month. The decrease of this enzyme activity could induce an increased cellular generation of radical species and lipid peroxidation, which might be link to hypertension.  相似文献   

15.
An imbalance in the antioxidative system was connected with the development of a number of pathological processes. In order to receive values of a healthy group and to evaluate pathological changes of the trace element dependent antioxidative status in future, we investigated 99 healthy volunteers (45 male and 54 female, mean age 37.4 +/- 11.7 years). We determined the concentrations of Se, Cu and Zn, the concentrations of malondialdehyde (MDA) and the activities of the Se dependent glutathione peroxidase (GSH-Px) and the Zn/Cu dependent superoxide dismutase (SOD). The plasma concentrations (mean +/- SD) for Se, Cu and Zn were 0.84 +/- 0.10 micromol/l, 15.6 +/- 2.78 micromol/l and 12.6 +/- 1.80 micromol/l, resp., and for non protein-bound and protein bound MDA 0.27 +/- 0.07 micromol/l and 1.11 +/- 0.25 micromol/l, resp. The activity of GSH-Px in plasma and erythrocytes was 130 +/- 20.8 U/l and 19.8 +/- 4.18 U/mg Hb, resp. and of SOD in erythrocytes 3,159 +/- 847.2 U/g Hb. In plasma positive correlations have been found between Se concentrations and GSH-Px activities (p < 0.002, r = 0.31) and between GSH-Px activities and concentrations of non protein-bound MDA (p = 0.004, r = 0.28). A negative correlation has been observed between GSH-Px activities in plasma and in erythrocytes. The higher the concentrations of Cu in erythrocytes, the higher were the activities of SOD (p = 0.03, r = 0.22) and GSH-Px in erythrocytes (r = 0.26, p = 0.01), while an increasing activity of GSH-Px in these cells correlated with a decreasing concentration of non protein-bound MDA (r = -0,31, p = 0.002). An increase in BMI was connected with an increase in protein-bound MDA and a decrease in GSH-Px activities in pLasma (p = 0.002 and r = 0.23). As the results demonstrate, Se and Cu concentrations in erythrocytes can improve the trace element dependent antioxidative status.  相似文献   

16.
目的:探讨异丙托溴铵联合布地奈德对慢性阻塞性肺疾病合并Ⅱ型呼吸衰竭患者MDA、SOD、GSH-Px水平及肺功能的影响。方法:选取我院收治的慢性阻塞性肺疾病合并Ⅱ型呼吸衰竭患者92例,分为对照组和实验组,每组各46例。对照组采用常规治疗,实验组在对照组基础上加用异丙托溴铵溶液联合布地奈德雾化吸入治疗。观察并比较两组患者治疗前后MDA、SOD及GSH-Px水平的变化情况以及肺功能和血气指标的改善情况。结果:与治疗前比较,两组患者治疗后SOD、GSH-Px、FEV1、VC、Pa O2明显升高,而MDA、RV、TLC、Pa CO2明显降低(P0.05);与对照组比较,实验组治疗后SOD、GSH-Px、FEV1、VC、Pa O2明显升高,而MDA、RV、TLC、Pa CO2明显降低(P0.05)。结论:异丙托溴铵联合布地奈德能够改善慢性阻塞性肺疾病合并Ⅱ型呼吸衰竭患者的肺功能参数、血气指标和MDA、SOD、GSH-Px水平,增强机体抗氧化功能,提高临床疗效。  相似文献   

17.
目的:本研究旨在探讨中药熊果苷对缺血再灌注损伤后脑细胞的影响,为中药熊果苷的临床应用提供理论依据。方法:昆明种小鼠40只,随机分成4组,即空白组、模型组、药物预防组和药物治疗组。根据缺血时脑损伤原理制成脑缺血再灌注损伤模型,以TTC染色、HE染色观察细胞形态学变化,并检测脑组织中超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量及谷胱甘肽过氧化物酶(GSH-Px)活性的变化。结果:与模型组相比,药物预防组和药物治疗组分别TTC染色缺血区域都不如模型组坏死明显,HE染色显示细胞损伤程度减轻,SOD、GSH—Px活性提高有显著性差异,MDA含量减少(均P〈0.05)。结论:药物熊果苷具有抗氧化作用,能有效地预防和保护脑细胞损伤。  相似文献   

18.
为了考察食品级槲皮素粉对机体最大摄氧量和耐力的影响,本研究纳入20名健康的大学生志愿者作为本研究的研究对象。将受试者随机分为A组和B组,每组10名,A组饮用剂量为1 mg/mL的槲皮素饮料,B组饮用安慰剂饮料,每天饮用1 000 m L。饮用7 d后,通过自行车分级运动测试最大摄氧量(VO2max),通过骑行疲劳时间测试耐力,同时检测血清丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)含量。然后进行交叉实验并测试VO2max、骑行疲劳时间及抗氧化指标。研究显示,与基线VO2max相比,饮用槲皮素饮料后VO2max显著升高13.21%,而饮用安慰剂饮料后的VO2max与基线无显著差异。与基线骑行疲劳时间相比,饮用槲皮素饮料后骑行疲劳时间显著升高25.15%,而饮用安慰剂饮料后的骑行疲劳时间与基线无显著差异。与基线血清MDA相比,饮用安慰剂饮料后受试者血清MDA显著升高27.15%,而饮用槲皮素饮料可抑制血清MDA的升高。与基线血清SOD和GSH-Px相比,饮用安慰剂饮料后受试者血清SOD和GSH-Px分别降低了20.49%和21.08%,而饮用槲皮素饮料可抑制血清SOD和GSH-Px的降低,表明槲皮素可显著提高骑行运动过程中受试者的VO2max和耐力。本研究初步表明,补充槲皮素可通过降低运动过程中MDA水平来减少脂质过氧化损伤。另外,槲皮素通过抑制运动过程中SOD和GSH-Px的降低来提高机体的抗氧化能力,从而延缓疲劳。  相似文献   

19.
Chemotherapy and radiation therapy are associated with increased formation of reactive oxygen species and depletion of critical plasma and tissue antioxidants. In patients undergoing high-dose chemotherapy, the plasma antioxidant concentration has been shown to decrease. However, these studies in which the oxidative stress status were investigated have a small number of patients and they are heterogeneous. In this study, the changes in certain trace elements together with oxidative stress parameters were investigated in 36 patients who had undergone autologous stem cell transplantation because of solid and hematological malignancies. Blood samples of the patients were examined before the high-dose chemotherapy (baseline), before stem cell transplantation (day -1), and after stem cell transplantation on day 1, 3, and 6. Erythrocyte zinc, silver, and iron levels were measured by atomic absorption spectrophotometry; malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were measured by UV-vis spectrophotometry. After high-dose chemotherapy, significant increases in the levels of MDA, GSH-Px, and SOD were observed. On the other hand, Cu levels remained the same while the levels of erythrocyte Zn and Fe were increased. Significant correlation was observed among MDA, GSH-Px, and SOD (p<0.05). High-dose chemotherapy gives rise to an increase in the oxidative stress and the reactive oxygen species. Standard parenteral nutrition protocols were found to be insufficient to lower this stress.  相似文献   

20.
The aim of this study was to examine the neurotoxicity of formaldehyde on prefrontal cortex and the protective effects of omega-3 essential fatty acids against these toxic effects. For this purpose, 21 male Wistar rats were divided into three groups. The rats in group I comprised the controls, while the rats in group II were injected every other day with formaldehyde (FA). The rats in group III received omega-3 fatty acids daily while exposed to formaldehyde. At the end of the 14-day experimental period, all rats were killed by decapitation. The brains of the rats were removed and the prefrontal cortex tissues were obtained from all brain specimens. Some of the prefrontal cortex tissue specimens were used for determination of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. The remaining prefrontal cortex tissue specimens were used for light microscopic and immunohistochemical evaluation. The levels of SOD and GSH-Px were significantly decreased, and MDA levels were significantly increased in rats treated with formaldehyde compared with those of the controls. Furthermore, in the microscopic examination of this group, formation of apoptotic bodies, pycnotic cells, and apoptotic cells including nuclear fragmentation and membrane budding were observed. However, increased SOD and GSH-Px enzyme activities, and decreased MDA levels were detected in the rats administered omega-3 fatty acids while exposed to formaldehyde. Additionally, cellular damage caused by formaldehyde was decreased, and structural appearance was similar to that of the control rats in this group. The biochemical and histological findings observed in all groups were also confirmed by immunohistochemical evaluation. It was determined that formaldehyde-induced neuronal damage in prefrontal cortex was prevented by administration of omega-3 essential fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号