首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of the retinoblastoma gene Rb leads to defects in cell proliferation, differentiation, or apoptosis, depending on specific cell or tissue types. To gain insights into the genes that can modulate the consequences of Rb inactivation, we carried out a genetic screen in Drosophila to identify mutations that affected apoptosis induced by inactivation of the Retinoblastoma-family protein (rbf) and identified a mutation that blocked apoptosis induced by rbf. We found this mutation to be a new allele of head involution defective (hid) and showed that hid expression is deregulated in rbf mutant cells in larval imaginal discs. We identified an enhancer that regulates hid expression in response to developmental cues as well as to radiation and demonstrated that this hid enhancer is directly repressed by RBF through an E2F binding site. These observations indicate that apoptosis of rbf mutant cells is mediated by an upregulation of hid. Finally, we showed that bantam, a miRNA that regulates hid translation, is expressed in the interommatidial cells in the larval eye discs and modulates the survival of rbf mutant cells.  相似文献   

2.
3.
The segmentation of Drosophila is a prime model to study spatial patterning during embryogenesis. The spatial expression of segment polarity genes results from a complex network of interacting proteins whose expression products are maintained after successful segmentation. This prompted us to investigate the stability and robustness of this process using a dynamical model for the segmentation network based on Boolean states. The model consists of intra-cellular as well as inter-cellular interactions between adjacent cells in one spatial dimension. We quantify the robustness of the dynamical segmentation process by a systematic analysis of mutations. Our starting point consists in a previous Boolean model for Drosophila segmentation. We define mathematically the notion of dynamical robustness and show that the proposed model exhibits limited robustness in gene expression under perturbations. We applied in silico evolution (mutation and selection) and discover two classes of modified gene networks that have a more robust spatial expression pattern. We verified that the enhanced robustness of the two new models is maintained in differential equations models. By comparing the predicted model with experiments on mutated flies, we then discuss the two types of enhanced models. Drosophila patterning can be explained by modelling the underlying network of interacting genes. Here we demonstrate that simple dynamical considerations and in silico evolution can enhance the model to robustly express the expected pattern, helping to elucidate the role of further interactions.  相似文献   

4.
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations.  相似文献   

5.
Overexpression of thioredoxin (TRX) confers oxidative stress resistance and extends lifespan in mammals and insects. However, less is known about phenotypes associated with loss of TRX. We investigated loss-of-function phenotypes of Trx-2 in Drosophila, and found that the mutant flies are hyper-susceptible to paraquat, a free radical generator, but not to hydrogen peroxide. They contain a high amount of protein carbonyl, which dramatically increases with age. Trx-2 mutants express high levels of anti-oxidant genes, such as superoxide dismutase, catalase, and glutathione synthetase. This is the first demonstration of biochemical and physiological consequences caused by loss of Trx-2 in Drosophila.  相似文献   

6.
7.
8.
The ventral nerve cord (VNC) of the Drosophila embryo is derived from neuroblasts (NBs). NBs divide in a stem cell lineage to generate a series of ganglion mother cells (GMCs), each of which divides once to produce a pair of neurons or glial cells. One of the NB genes, castor (cas), is expressed in a subset of NBs and has never been identified in neurons and the peripheral nervous system; cas plays a role in axonogenesis. But its limited expression along the dorsal-ventral axis within the central nervous system has not been investigated yet. In the present study, we examined the expression patterns of both genes using confocal microscopy to determine the effects of repo mutation on cas expression. Cas was mainly expressed in layers different from repo-expressed layers during early embryogenesis: repo was expressed mostly from deep to mid layers, while cas, from mid to superficial layers. Loss-of-function of repo did not result in an ectopic expression of cas, but rather, a scattering of cas-expressing cells. However, repo gain-of-function mutation caused repression of cas. In addition, repo-expressing cells seemed to block the migration of cas-expressing cells.  相似文献   

9.
Bax is a pro-apoptotic member of the Bcl-2 family proteins involved in the release of apoptogenic factors from mitochondria to the cytosol. Recently, it has been shown both in mammals and yeast that Bax insertion in the mitochondrial outer membrane involves at least two distinct mechanisms, one of which uses the TOM complex. Here, we show that in Drosophila, heterozygous loss of function mutations of Tom22 or Tom70, two receptors of the TOM complex, attenuates bax-induced phenotypes in vivo. These results argue that the TOM complex may be used as a mitochondrial Bax receptor in Drosophila.  相似文献   

10.
Extracellular signalling molecules play many roles in the development of higher organisms. They are used reiteratively in different tissues and stages, but the response of the receiving cells is controlled in a context dependent manner. The pattern of expression of the signalling molecule Wingless/WNT in Drosophila is extraordinarily complex. We have studied the mechanism that controls its expression and function in the outer ring of the Drosophila wing hinge. Our findings indicate that wingless expression is controlled by a dual mechanism: its initial activation requires the product of zinc finger homeodomain 2 and is subsequently repressed by the product of the gene complex elbow/no ocelli. This tight regulation restricts the activation of wingless temporally and spatially. Later in development, wingless expression is maintained by an autoregulatory loop that involves the product of homothorax. We have analyzed the phenotype of a wingless allelic combination that specifically removes the outer ring, and our results show that Wingless is required to promote local proliferation of the wing base cells. Thus, cell proliferation in the proximal-distal axis is controlled by the sequential activation of wingless in the inner ring and the outer ring at different stages of development.  相似文献   

11.
During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.  相似文献   

12.
We propose a new model describing the production and the establishment of the stable gradient of the Bicoid protein along the antero-posterior axis of the embryo of Drosophila. In this model, we consider that bicoid mRNA diffuses along the antero-posterior axis of the embryo and the protein is produced in the ribosomes localized near the syncytial nuclei. Bicoid protein stays localized near the syncytial nuclei as observed in experiments. We calibrate the parameters of the mathematical model with experimental data taken during the cleavage stages 11-14 of the developing embryo of Drosophila. We obtain good agreement between the experimental and the model gradients, with relative errors in the range 5-8%. The inferred diffusion coefficient of bicoid mRNA is in the range , in agreement with the theoretical predictions and experimental measurements for the diffusion of macromolecules in the cytoplasm. We show that the model based on the mRNA diffusion hypothesis is consistent with the known observational data, supporting the recent experimental findings of the gradient of bicoid mRNA in Drosophila [Spirov et al. (2009). Development 136, 605-614].  相似文献   

13.
14.
To uncover the mechanism by which human prostate cancer progresses, we performed a genetic screen for regulators of human prostate cancer progression using the Drosophila accessory gland, a functional homolog of the mammalian prostate. Cell growth and migration of secondary cells in the adult male accessory gland were found to be regulated by paired, N-cadherin, and E-cadherin, which are Drosophila homologues of regulators of human prostate cancer progression. Using this screening system, we also identified three genes that promoted growth and migration of secondary cells in the accessory gland. The human homologues of these candidate genes – MRGBP, CNPY2, and MEP1A – were found to be expressed in human prostate cancer model cells and to promote replication and invasiveness in these cells. These findings suggest that the development of the Drosophila accessory gland and human prostate cancer cell growth and invasion are partly regulated through a common mechanism. The screening system using the Drosophila accessory gland can be a useful tool for uncovering the mechanisms of human prostate cancer progression.  相似文献   

15.
Juvenile hormone (JH) is critical for development, metamorphosis, and reproduction in insects. While the physiological importance of JH has been appreciated for decades, its biosynthetic pathway and molecular action remain poorly understood. DrosophilaCG10527 encodes a protein with high homology to crustacean farnesoic acid methyltransferase (FAMeT) that converts farnesoic acid to methyl farnesoate (MF), a precursor of JH, but its in vivo functions remain unclear. Here we report that CG10527 is expressed widely in secondary cells in the male accessory glands, in ovarian follicle cells, and in glial cells in the nervous system. Furthermore, CG10527 is expressed abundantly in the corpora allata where JH is synthesized. To understand the physiological functions of CG10527, we generated specific CG10527 deletions. Phenotypic analysis showed that CG10527 null mutants are fully viable and fertile in both sexes, indicating that CG10527 is not essential for survival and fertility. Surprisingly, CG10527 mutants showed no defects in the biosynthesis of MF and JH. However, CG10527 mutants were 3-5 times more resistant than wild-type flies to topically applied MF and JH as well as the JH analog methoprene at both sub-lethal and lethal doses. Taken together, our data indicate that DrosophilaCG10527 plays little, if any, role in JH biosynthesis but may participate in the JH signaling pathway.  相似文献   

16.
Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild.  相似文献   

17.
This paper describes the optimisation of an existing basidiomycete molecular toolkit through the development of new versatile vectors. These vectors enable the straightforward and rapid construction of gene expression and silencing cassettes by allowing the easy exchange of promoters, coding regions and terminator elements. The constructs contain multiple cloning sites (MCS) allowing any gene to be inserted using a range of restriction sites, with the option of a 5′ integral intron for efficient gene expression. We describe the testing of these vectors through marker gene expression in Coprinopsis cinerea. This work also extends the range of marker genes available for use in C. cinerea with the first report of DsRed and monomeric red fluorescent protein (mRFP) expression in C. cinerea and further demonstrates the requirement for an intron in the expression cassette for some marker genes. However, analysis of transformants containing either β-glucuronidase (GUS) or luciferase (LUC) genes, with and without an intron revealed no detectable marker gene expression. The inclusion of an intron does therefore not guarantee expression and other genetic factors may be involved.  相似文献   

18.
19.
optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein–protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play an important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development.  相似文献   

20.
In the past decade, improvements in genome annotation, protein fractionation methods and mass spectrometry instrumentation resulted in rapid growth of Drosophila proteomics. This review presents the current status of proteomics research in the fly. Areas that have seen major advances in recent years include efforts to map and catalog the Drosophila proteome and high-throughput as well as targeted studies to analyze protein–protein interactions and post-translational modifications. Stable isotope labeling of flies and other applications of quantitative proteomics have opened up new possibilities for functional analyses. It is clear that proteomics is becoming an indispensable tool in Drosophila systems biology research that adds a unique dimension to studying gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号