首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Precise temporal and spatial regulation of gene expression during Drosophila oogenesis is essential for patterning the anterior-posterior and dorsal-ventral body axes. Establishment of the anterior-posterior axis requires posterior localization and translational control of both oskar and nanos mRNAs. Establishment of the dorsal-ventral axis depends on the precise restriction of gurken mRNA and protein to the dorsal-anterior corner of the oocyte. We have previously shown that Glorund, the Drosophila hnRNP F/H homolog, contributes to anterior-posterior axis patterning by regulating translation of nanos mRNA, through a direct interaction with its 3′ untranslated region. To investigate the pleiotropy of the glorund mutant phenotype, which includes dorsal-ventral and nuclear morphology defects, we searched for proteins that interact with Glorund. Here we show that Glorund is part of a complex containing the hnRNP protein Hrp48 and the splicing factor Half-pint and plays a role both in mRNA localization and nurse cell chromosome organization, probably by regulating alternative splicing of ovarian tumor. We propose that Glorund is a component of multiple protein complexes and functions both as a translational repressor and splicing regulator for anterior-posterior and dorsal-ventral patterning.  相似文献   

2.
3.
4.
Redundancy among dynamic modules is emerging as a potentially generic trait in gene regulatory networks. Moreover, module redundancy could play an important role in network robustness to perturbations. We explored the effect of dynamic-module redundancy in the networks associated to hair patterning in Arabidopsis root and leaf epidermis. Recent studies have put forward several dynamic modules belonging to these networks. We defined these modules in a discrete dynamical framework that was previously reported. Then, we addressed whether these modules are sufficient or necessary for recovering epidermal cell types and patterning. After defining two quantitative estimates of the system's robustness, we also compared the robustness of each separate module with that of a network coupling all the leaf or root modules. We found that, considering certain assumptions, all the dynamic modules proposed so far are sufficient on their own for pattern formation, but reinforce each other during epidermal development. Furthermore, we found that networks of coupled modules are more robust to perturbations than single modules. These results suggest that dynamic-module redundancy might be an important trait in gene regulatory networks and point at central questions regarding network evolution, module coupling, pattern robustness and the evolution of development.  相似文献   

5.
In Drosophila, primary pair-rule genes establish the parasegmental boundaries and indirectly control the periodic expression of the segment polarity genes engrailed (en) and wingless (wg) via regulation of secondary pair-rule genes. Although orthologs of some Drosophila pair-rule genes are not required for proper segmentation in Tribolium, segmental expression of Tc-en and Tc-wg is conserved. To understand how these segment polarity genes are regulated, we examined the results of expressing one or two pair-rule genes in the absence of the other known pair-rule genes. Expression of one or both of the secondary pair-rule genes, Tc-sloppy-paired (Tc-slp) and Tc-paired (Tc-prd), activated Tc-wg in the absence of the primary pair-rule genes, Tc-even-skipped (Tc-eve), Tc-runt (Tc-run) and Tc-odd-skipped (Tc-odd). Tc-eve alone failed to activate Tc-wg or Tc-en, but in combination with Tc-run or Tc-prd activated Tc-en. These results, interpreted within the pair-rule gene expression patterns, suggest separate models for the genetic regulation of the juxtaposed expression of Tc-wg and Tc-en at odd- and even-numbered parasegmental boundaries, respectively. Conserved interactions between eve and prd at the anterior boundary of odd-numbered parasegments may reflect an ancestral segmentation mechanism that functioned in every segment prior to the evolution of pair-rule segmentation.  相似文献   

6.
The segmentation gene hierarchy of Drosophila melanogaster represents one of the best understood of the gene networks that generate pattern during embryogenesis. Some components of this network are ancient, while other parts of the network have evolved within the higher Diptera. To further understand the evolution of this gene network, we are studying the role of gap genes in a representative of a basally diverging dipteran lineage, the moth midge Clogmia albipunctata. We have isolated orthologues of all of the Drosophila trunk gap genes from Clogmia, and determined their domains of expression during the blastoderm stage of development, in relation to one another, and in relation to the expression of even-skipped (Calb-eve), a component of the pair-rule system that is directly regulated by the gap genes in Drosophila. We find that hunchback (Calb-hb), Krüppel (Calb-Kr), knirps (Calb-knl), giant (Calb-gt) and tailless (Calb-tll) are all expressed in patterns consistent with a gap segmentation role during blastoderm formation, but huckebein (Calb-hkb) is not. In the anterior half of the embryo, the relative positions of the gap gene expression domains in relation to one another, and in relation to the eve stripes, are rather well conserved. In the posterior half of the embryo, there are significant differences. Posteriorly, Calb-gt is expressed only transiently and very weakly, in a domain that overlaps entirely with that of Calb-knl. At late blastoderm stages, none of the candidate genes we have tested is expressed in the region between the posterior Calb-knl domain and Calb-tll. It is likely that the regulation of Calb-eve expression in this posterior region depends on combinations of gap gene factors that differ from those utilised for the same stripes in Drosophila. Both the gap and the pair-rule patterns of gene expression are dynamic in Clogmia, as they are in Drosophila, shifting anteriorly as blastoderm development proceeds.  相似文献   

7.
8.
9.
10.
optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein–protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play an important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development.  相似文献   

11.
Localization of the germ plasm to the posterior of the Drosophila oocyte is required for anteroposterior patterning and germ cell development during embryogenesis. While mechanisms governing the localization of individual germ plasm components have been elucidated, the process by which germ plasm assembly is restricted to the posterior pole is poorly understood. In this study, we identify a novel allele of bazooka (baz), the Drosophila homolog of Par-3, which has allowed the analysis of baz function throughout oogenesis. We demonstrate that baz is required for spatial restriction of the germ plasm and axis patterning, and we uncover multiple requirements for baz in regulating the organization of the oocyte microtubule cytoskeleton. Our results suggest that distinct cortical domains established by Par proteins polarize the oocyte through differential effects on microtubule organization. We further show that microtubule plus-end enrichment is sufficient to drive germ plasm assembly even at a distance from the oocyte cortex, suggesting that control of microtubule organization is critical not only for the localization of germ plasm components to the posterior of the oocyte but also for the restriction of germ plasm assembly to the posterior pole.  相似文献   

12.
13.
In Drosophila, gap genes translate positional information from gradients of maternal coordinate activity and act to position the periodic patterns of pair-rule gene stripes across broad domains of the embryo. In holometabolous insects, maternal coordinate genes are fast-evolving, the domains that gap genes specify often differ from their orthologues in Drosophila while the expression of pair-rule genes is more conserved. This implies that gap genes may buffer the fast-evolving maternal coordinate genes to give a more conserved pair-rule output. To test this idea, we have examined the function and expression of three honeybee orthologues of gap genes, Krüppel, caudal, and giant. In honeybees, where many Drosophila maternal coordinate genes are missing, these three gap genes have more extensive domains of expression and activity than in other insects. Unusually, honeybee caudal mRNA is initially localized to the anterior of the oocyte and embryo, yet it has no discernible function in that domain. We have also examined the influence of these three genes on the expression of honeybee even-skipped and a honeybee orthologue of engrailed and show that the way that these genes influence segmental patterning differs from Drosophila. We conclude that while the fundamental function of these gap genes is conserved in the honeybee, shifts in their expression and function have occurred, perhaps due to the apparently different maternal patterning systems in this insect.  相似文献   

14.
Extracellular signalling molecules play many roles in the development of higher organisms. They are used reiteratively in different tissues and stages, but the response of the receiving cells is controlled in a context dependent manner. The pattern of expression of the signalling molecule Wingless/WNT in Drosophila is extraordinarily complex. We have studied the mechanism that controls its expression and function in the outer ring of the Drosophila wing hinge. Our findings indicate that wingless expression is controlled by a dual mechanism: its initial activation requires the product of zinc finger homeodomain 2 and is subsequently repressed by the product of the gene complex elbow/no ocelli. This tight regulation restricts the activation of wingless temporally and spatially. Later in development, wingless expression is maintained by an autoregulatory loop that involves the product of homothorax. We have analyzed the phenotype of a wingless allelic combination that specifically removes the outer ring, and our results show that Wingless is required to promote local proliferation of the wing base cells. Thus, cell proliferation in the proximal-distal axis is controlled by the sequential activation of wingless in the inner ring and the outer ring at different stages of development.  相似文献   

15.
Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a crucial data gap in arthropods and analyse segmentation in a crustacean embryo. We analyse the expression of homologues of the Drosophila and vertebrate segmentation genes and show that members of the Notch signalling pathway are expressed at the same time as the pair-rule genes. Furthermore, inactivation of Notch signalling results in irregular boundaries of the odd-skipped-like expression domains and affects the formation of segments. In severe cases embryos appear unsegmented. We suggest two scenarios for the function of Notch signalling in segmentation. The first scenario agrees with a segmentation clock involving Notch signalling, while the second scenario discusses an alternative mechanism of Notch function which is integrated into a hierarchical segmentation cascade.  相似文献   

16.
17.
Segment formation in the long germ insect Drosophila is dominated by overlapping gap gene domains in the syncytial blastoderm. In the short germ beetle Tribolium castaneum abdominal segments arise from a cellular growth zone, implying different patterning mechanisms. We describe here the single Tribolium ortholog of the Drosophila genes knirps and knirps-related (called Tc-knirps). Tc-knirps expression is conserved during head patterning and at later stages. However, posterior Tc-knirps expression in the ectoderm is limited to a stripe in A1, instead of a broad abdominal domain covering segment primordia A2-A5 as in Drosophila. Tc-knirps RNAi yields only mild defects in the abdomen, at a position posterior to the abdominal Tc-knirps domain. In addition, Tc-knirps RNAi larvae lack the antennal and mandibular segments. These defects are much more severe than the head defects caused by combined inactivation of Dm-knirps and Dm-knirps-related. Our findings support the notion that the role of gap gene homologs in abdominal segmentation differs fundamentally in long and short germ insects. Moreover, the pivotal role of Tc-knirps in the head suggests an ancestral role for knirps as head patterning gene. Based on this RNAi analysis, Tc-knirps functions neither in the head nor the abdomen as a canonical gap gene.  相似文献   

18.
The Drosophila dorsal vessel is a segmentally repeated linear organ, in which seven-up (svp) is expressed in two pairs of cardioblasts and two pairs of pericardial cells in each segment. Under the control of hedgehog (hh) signaling from the dorsal ectoderm, svp participates in diversifying cardioblast identities within each segment. In this experiment, the homozygous embryos of svp mutants exhibited an increase in cell size of Eve positive pericardial cells (EPCs) and a disarranged expression pattern, while the cardioblasts pattern of svp-lacZ expression was normal. In the meantime, the DA1 muscle founders were absent in some segments in svp mutant embryos, and the dorsal somatic muscle patterning was also severely damaged in the late stage mutant embryos, suggesting that svp is required for the differentiation of Eve-positive pericardial cells and DA1 muscle founders and may have a role in EPC cell growth.  相似文献   

19.
20.
The Arabidopsis thaliana flower organ specification gene regulatory network (FOS-GRN) has been modeled previously as a discrete dynamical system, recovering as steady states configurations that match the genetic profiles described in primordial cells of inflorescence, sepals, petals, stamens and carpels during early flower development. In this study, we first update the FOS-GRN by adding interactions and modifying some rules according to new experimental data. A discrete model of this updated version of the network has a dynamical behavior identical to previous versions, under both wild type and mutant conditions, thus confirming its robustness. Then, we develop a continuous version of the FOS-GRN using a new methodology that builds upon previous proposals. The fixed point attractors of the discrete system are all observed in the continuous model, but the latter also contains new steady states that might correspond to genetic activation states present briefly during the early phases of flower development. We show that both the discrete and the continuous models recover the observed stable gene configurations observed in the inflorescence meristem, as well as the primordial cells of sepals, petals, stamens and carpels. Additionally, both models are subjected to perturbations in order to establish the nature of additional signals that may suffice to determine the experimentally observed order of appearance of floral organs. Our results thus describe a possible mechanism by which the network canalizes molecular signals and/or noise, thus conferring robustness to the differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号