首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
炎性小体激活与细胞焦亡的研究进展   总被引:1,自引:0,他引:1  
细胞焦亡是一种依赖天冬氨酸特异性半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase 1,caspase-1)/caspase-11的程序性细胞死亡方式。炎性小体的激活在细胞焦亡过程中扮演重要角色。当病原体入侵时,核苷酸结合寡聚化结构域样受体(nucleotide-binding oligomerization domain-like receptor,NLR)和黑色素瘤缺乏因子2(absent in melanoma 2,AIM2)等胞内模式识别受体(pattern recognition receptor,PRR)与相应配体结合,导致炎性小体多蛋白复合物组装和caspase-1/caspase-11激活,进而诱导细胞焦亡发生。深入研究炎性小体激活和细胞焦亡的相关机制,对认识炎症性疾病的发生发展非常重要。本文就炎性小体激活与细胞焦亡的研究进展进行综述。  相似文献   

2.
脊髓损伤的治疗与康复一直是医学领域的重大难题,尤其是在改善损伤的神经功能方面进展甚微。继发性损伤是造成脊髓损伤后神经功能障碍的主要原因,炎症反应是继发性损伤阶段最重要的病理过程。急性期通过抑制神经炎症来减轻继发性损伤被认为可减轻神经功能损害而达到神经保护作用。炎性小体是一类蛋白质复合体,由模式识别受体中的NLRs家族和PHYIN家族的受体蛋白质作为主要框架组装并命名,常见的炎性小体包括NLRP1、NLRP3、NLRC4(IPAF)、AIM2等。在感染或受到损伤刺激时,炎性小体在细胞质内组装,并激活促炎症蛋白酶胱天蛋白酶1(caspase-1),活化的胱天蛋白酶1一方面促进促炎症细胞因子IL-1β和IL-18的前体成熟和分泌,另一方面介导细胞焦亡。细胞焦亡以细胞肿胀破裂并释放细胞内容物为特征,是在炎症和应激的病理条件下诱导的程序性细胞死亡方式。促炎症细胞因子和焦亡释放的胞内物质都可作为促炎信号引发炎症反应。近期发现,炎性小体通过诱导促炎因子释放以及介导细胞焦亡等途径, 参与激活脊髓损伤后的炎症级联反应,加重继发性神经炎症。靶向抑制炎性小体的激活可减轻炎症反应,促进神经细胞存活,达到神经保护作用。因此,炎性小体有望成为脊髓损伤治疗的新靶点。本文拟从炎性小体的结构及其在脊髓损伤中的作用、激活机制和治疗前景进行综述,以期为后续研究提供思路。  相似文献   

3.
细胞焦亡(pyroptosis)是一种高度促炎性的细胞程序性死亡,最早是在受细菌感染或者细菌毒素处理后的巨噬细胞中观察到的,很长一段时间被误认为是一种巨噬细胞特异的、依赖于能够切割白介素1β的促炎性蛋白酶caspase-1的细胞死亡.后续的研究发现,胞浆内模式识别受体识别病原体来源的模式分子或者机体本身来源的危险信号分子形成炎症小体(inflammasomes),招募和激活caspase-1导致细胞焦亡;鼠的caspase-11和人的caspase-4/5直接作为模式识别受体识别细菌脂多糖类脂A组装的炎症小体也导致细胞焦亡,这一发现颠覆了传统炎症小体的概念.与caspase-1不同, caspase-11/4/5不能切割白介素且引起的细胞焦亡在非单核细胞中也普遍存在.最新的研究发现, caspase-1以及caspase-11/4/5都能切割共同的底物gasdermin D(GSDMD)导致裂解性细胞死亡.GSDMD属于一类具有膜打孔活性的gasdermin家族蛋白成员,细胞焦亡也被重新定义为gasdermin介导的程序性坏死样细胞死亡,开创了细胞焦亡研究的新领域.本文回顾了细胞焦亡研究的历史以及细胞焦亡概念的进化过程,总结了caspase-1和caspase-11/4/5上游目前已知的天然免疫通路,讨论了关于细胞焦亡的研究进展尤其是GSDMD以及其他gasdermin家族细胞焦亡执行蛋白的功能和作用机制,以及细胞焦亡和相关蛋白在对抗感染以及人的自身炎症性疾病过程中的作用.  相似文献   

4.
细胞焦亡是一种程序性细胞死亡,参与了多种疾病的发生发展,而炎症反应在细胞焦亡中的作用是目前的研究热点。炎症小体是炎症反应的重要组成部分,其中黑色素瘤缺乏因子2 (absent in melanoma 2,AIM2)炎症小体的激活是诱发由含半胱氨酸的天冬氨酸蛋白酶1 (caspase-1)介导的细胞焦亡的重要因素。靶向AIM2炎症小体激活与细胞焦亡可作为临床相关疾病治疗的有效策略,本文综述了AIM2炎症小体介导的细胞焦亡的研究进展。  相似文献   

5.
【目的】牛病毒性腹泻病毒(bovine viral diarrhea virus, BVDV)是引起牛病毒性腹泻-黏膜病的关键病毒。BVDV的结构蛋白Erns可在病毒感染的初期削弱宿主的免疫防御,引发牛群炎症反应。核苷酸寡聚化结构域样受体(nucleotide-binding oligomerization domain, NOD)热蛋白结构域相关蛋白3 (NLRP3)炎症小体是NOD样受体(NOD-like receptor, NLRs)家族重要成员,调控炎症性疾病的发生发展,同时激活的NLRP3炎症小体能够引起宿主细胞焦亡,进而诱发级联放大的炎症反应。但BVDV Erns蛋白在BVDV感染诱发炎症反应的分子机制尚不清楚。【方法】为进一步探索Erns蛋白对BVDV感染激活NLRP3炎症小体诱发细胞焦亡的影响,构建了BVDV Erns蛋白的真核表达质粒pCMV-HA-Erns,过表达BVDV Erns蛋白,检测BVDV感染细胞中NLRP3炎症小体组分[半胱氨酸蛋白酶(caspase-1)、凋亡相关斑点样蛋白(apoptosis-associated speck-like protein, ASC)和NLRP3]、IL-1β的mRNA转录水平和蛋白表达水平,以及细胞死亡调节蛋白(gasdermin D, GSDMD)的基因表达和蛋白剪切情况,并通过扫描电镜观察牛睾丸(bovine testis, BT)细胞膜成孔及BT细胞内容物释放情况,以分析Erns蛋白诱导BT细胞产生细胞焦亡。【结果】Erns蛋白能够显著引起NLRP3炎症小体活化进而激活caspase-1,活化的caspase-1一方面切割GSDMD,形成有活性的GSDMD-N端并在BT细胞膜形成孔洞,释放内容物,诱导BT细胞发生细胞焦亡;另一方面活化的caspase-1切割pro-IL-1β,形成有活性的IL-1β,并释放到BT细胞外,引起BT细胞上清中IL-1β水平上升。【结论】系统解析了BVDV Erns蛋白激活NLRP3炎症小体介导细胞焦亡的产生,对疫苗及治疗药物的研制具有重要指导意义。  相似文献   

6.
细胞死亡对多细胞生物体个体发育、组织重塑和免疫调控具有重要意义。细胞焦亡,或称为Caspase-1依赖性细胞死亡,是宿主细胞控制病原微生物感染的重要防御机制。简要介绍了细胞焦亡的概念、分子机制和焦亡相关的病理生理作用。  相似文献   

7.
细胞焦亡是一种由Gasdermin家族蛋白介导的新型程序性细胞死亡。当宿主细胞感应病原体感染或其他危险信号时,Gasdermin家族蛋白被切割活化并诱导细胞焦亡。细胞焦亡过程往往伴随大量炎性细胞因子释放,这些炎性细胞因子在宿主清除病原体过程中发挥着至关重要作用,而病原体在与宿主长期“博弈”过程中也进化出抑制细胞焦亡的策略以实现免疫逃逸。本文介绍了细胞焦亡的发现历程及其在抗感染免疫中的重要功能,并总结了病原体抑制细胞焦亡的多种新策略及其相关研究进展。深入理解细胞焦亡的发生及调控机制,可揭示相关感染性疾病的发病机制并有助于开发有效的抗感染治疗策略。  相似文献   

8.
沙门菌病(Salmonellosis)是全世界最普遍的食源性疾病之一,不仅对养殖业造成经济损失,还对人类安全构成威胁。禽沙门菌感染肠道后,可诱导肠上皮细胞表达多种TLRs和炎症反应的发生,在分泌的趋化因子作用下免疫效应细胞迁移到感染部位。细菌通过肠上皮细胞屏障后被巨噬细胞或树突状细胞吞噬,其中巨噬细胞是沙门菌的主要定殖场所。天然免疫系统将抗原递呈给淋巴细胞后,机体能够在2–3周内通过以Th1为主的免疫应答清除在肠道和深层组织中的沙门菌。而宿主特异性血清型鸡白痢沙门菌从肠道侵入后,在肝脾和其他器官中定殖,进而引发全身感染。早期感染阶段不会引起肠道炎症反应,主要诱导以Th2为主的免疫应答,而Th1型应答相对较弱,有利于鸡白痢沙门菌在机体内的持续存在和感染。本文围绕禽沙门菌的致病机理和免疫应答特性进行阐述,尤其对鸡白痢沙门菌免疫逃逸和持续载菌的特性进行深入分析,为禽沙门菌病的防控提供新靶标和新见解。  相似文献   

9.
先天性免疫系统作为宿主抵抗外来病原入侵的第一道防线,也是最迅速的防御系统。宿主先天性免疫系统中的模式识别受体识别入侵信号并激活炎症信号通路,诱导产生大量促炎性细胞因子,引起炎症反应。病毒感染是激活炎症反应的条件之一,诱导机体产生强烈的免疫应答,强大的炎症反应调控网络在宿主抗病毒过程中发挥关键作用,以维持机体的平衡。本文综述了病毒感染引起的炎症反应,重点介绍了宿主对炎症反应的调控网络,以及DNA和RNA病毒对炎症反应的调节机制,为病毒感染引起的免疫性疾病的治疗提供参考。  相似文献   

10.
方仁东  雷桂花  彭远义 《微生物学报》2017,57(10):1421-1433
炎症小体(Inflammasome)是细胞质中多种蛋白组装成的复合物,炎症小体的激活能活化半胱天冬酶-1(caspase-1),进而引起系列促炎细胞因子的成熟与分泌和诱导细胞焦亡。当病原体感染时,炎症小体的激活在宿主天然免疫应答中起重要作用。大量研究表明,多数情况下炎症小体对宿主起保护作用,仅少数情况下保护作用不明显或表现出有利于病原体生存的一面。在长期进化中,病原体也发展出逃避宿主炎症小体作用的策略。病原体可直接抑制炎症小体的激活或减弱炎症小体的作用。本文从病原体感染宿主中炎症小体的作用及病原体对宿主炎性症小体的逃避机制两方面对二者相互作用的最新研究进展进行综述。  相似文献   

11.
Inflammasomes are innate immune mechanisms that promote inflammation by activating the protease caspase-1. Active caspase-1 induces pyroptosis, a necrotic form of regulated cell death, which facilitates the release of intracellular proinflammatory molecules, including IL-1 family cytokines. Recent studies identified mediators of inflammasome-associated cell death and suggested that inflammasomes induce not only pyroptosis, but also apoptosis. Caspase-1 has the potential to induce pyroptosis and apoptosis in a manner that is dependent on the expression of the pyroptosis mediator gasdermin D. Caspase-1-induced apoptosis is mediated by Bid and caspase-7. Caspase-8 is also activated following the formation of inflammasomes and may induce apoptosis. Because inflammasomes contribute to the pathogenesis of inflammatory disorders and host defenses against microbial pathogens, a more detailed understanding of the mechanisms underlying inflammasome-associated cell death may contribute to the development of novel therapeutic strategies for inflammasome-related diseases. Pyroptosis has been implicated in inflammasome-related diseases, and compounds that inhibit this process have been reported. The molecular mechanisms of inflammasome-associated cell death and its physiological implications are discussed herein.  相似文献   

12.
Pyroptosis and host cell death responses during Salmonella infection   总被引:3,自引:0,他引:3  
Salmonella enterica are facultatively intracellular pathogens causing diseases with markedly visible signs of inflammation. During infection, Salmonella interacts with various host cell types, often resulting in death of those cells. Salmonella induces intestinal epithelial cell death via apoptosis, a cell death programme with a notably non-inflammatory outcome. In contrast, macrophage infection triggers caspase-1-dependent proinflammatory programmed cell death, a recently recognized process termed pyroptosis, which is distinguished from other forms of cellular demise by its unique mechanism, features and inflammatory outcome. Rapid macrophage pyroptosis depends on the Salmonella pathogenicity island-1 type III secretion system (T3SS) and flagella. Salmonella dynamically modulates induction of macrophage pyroptosis, and regulation of T3SS systems permits bacterial replication in specialized intracellular niches within macrophages. However, these infected macrophages later undergo a delayed form of caspase-1-dependent pyroptosis. Caspase-1-deficient mice are more susceptible to a number of bacterial infections, including salmonellosis, and pyroptosis is therefore considered a generalized protective host response to infection. Thus, Salmonella-induced pyroptosis serves as a model to understand a broadly important pathway of proinflammatory programmed host cell death: examining this system affords insight into mechanisms of both beneficial and pathological cell death and strategies employed by pathogens to modulate host responses.  相似文献   

13.
Aeromonas spp. are Gram-negative bacteria that cause serious infectious disease in humans. Such bacteria have been shown to induce apoptosis in infected macrophages, yet the host responses triggered by macrophage death are largely unknown. In this study, we demonstrate that the infection of mouse bone marrow-derived macrophages with Aeromonas veronii biotype sobria triggers activation of caspase-1 with the ensuing release of IL-1β and pyroptosis. Caspase-1 activation in response to A. veronii infection requires the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain and both the NLRP3 and NLRC4 inflammasomes. Furthermore, caspase-1 activation requires aerolysin and a functional type III secretion system in A. veronii. Aerolysin-inducing caspase-1 activation is mediated through the NLRP3 inflammasome, with aerolysin-mediated cell death being largely dependent on the NLRP3 inflammasome. In contrast, the type III secretion system activates both the NLRP3 and NLRC4 inflammasomes. Inflammasome-mediated caspase-1 activation is also involved in host defenses against systemic A. veronii infection in mice. Our results indicated that multiple factors from both the bacteria and the host play a role in eliciting caspase-1 activation during A. veronii infection.  相似文献   

14.
Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3?/? Casp8?/? macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.  相似文献   

15.
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.  相似文献   

16.
Modulation of inflammasome pathways by bacterial and viral pathogens   总被引:1,自引:0,他引:1  
Inflammasomes are emerging as key regulators of the host response against microbial pathogens. These cytosolic multiprotein complexes recruit and activate the cysteine protease caspase-1 when microbes invade sterile tissues or elicit cellular damage. Inflammasome-activated caspase-1 induces inflammation by cleaving the proinflammatory cytokines IL-1β and IL-18 into their biologically active forms and by releasing the alarmin HMGB1 into the extracellular milieu. Additionally, inflammasomes counter bacterial replication and clear infected immune cells through an inflammatory cell death program termed pyroptosis. As a countermeasure, bacterial and viral pathogens evolved virulence factors to antagonize inflammasome pathways. In this review, we discuss recent progress on how inflammasomes contribute to host defense against bacterial and viral pathogens, and we review how viruses and bacteria modulate inflammasome function to their benefit.  相似文献   

17.
Inflammasomes are innate immune mechanisms that activate caspase-1 in response to a variety of stimuli, including Salmonella infection. Active caspase-1 has a potential to induce two different types of cell death, depending on the expression of the pyroptosis mediator gasdermin D (GSDMD); following caspase-1 activation, GSDMD-sufficient and GSDMD-null/low cells undergo pyroptosis and apoptosis, respectively. Although Bid, a caspase-1 substrate, plays a critical role in caspase-1 induction of apoptosis in GSDMD-null/low cells, an additional mechanism that mediates this cell death independently of Bid has also been suggested. This study investigated the Bid-independent pathway of caspase-1-induced apoptosis. Caspase-1 has been reported to process caspase-6 and caspase-7. Silencing of caspase-7, but not caspase-6, significantly reduced the activation of caspase-3 induced by caspase-1, which was activated by chemical dimerization, in GSDMD/Bid-deficient cells. CRISPR/Cas9-mediated depletion of caspase-7 had the same effect on the caspase-3 activation. Moreover, in the absence of GSDMD and Bid, caspase-7 depletion reduced apoptosis induced by caspase-1 activation. Caspase-7 was activated following caspase-1 activation independently of caspase-3, suggesting that caspase-7 acts downstream of caspase-1 and upstream of caspase-3. Salmonella induced the activation of caspase-3 in GSDMD-deficient macrophages, which relied partly on Bid and largely on caspase-1. The caspase-3 activation and apoptotic morphological changes seen in Salmonella-infected GSDMD/Bid-deficient macrophages were attenuated by caspase-7 knockdown. These results suggest that in addition to Bid, caspase-7 can also mediate caspase-1-induced apoptosis and provide mechanistic insights into inflammasome-associated cell death that is one major effector mechanism of inflammasomes.  相似文献   

18.
Pyroptosis is a new form of programmed cell death generated by some inflammasomes, piloting the cleavage of gasdermin (GSDM) and stimulation of dormant cytokines like IL-18 and IL-1β; these reactions are narrowly linked to certain diseases like diabetic nephropathy and atherosclerosis. Doxorubicin, a typical anthracycline, and famous anticancer drug has emerged as a prominent medication in several cancer chemotherapies, although its application is accompanied with expending of dose-dependent, increasing, irreversible and continuing cardiotoxic side effects. However, the exact path that links the induced pyroptosis to the mechanism by which Doxorubicin (DOX) acts against breast cancer cells is still puzzling. The present study seeks to elucidate the potential link between DOX-induced cell death and pyroptosis in two human breast cancer cell lines (MDA-MB-231 and T47D). We proved that treatment with DOX reduced the cell viability in a dose-dependent way and induced pyroptosis morphology in MDA-MB-231 and T47D cells. Also, protein expression analyses revealed GSDME as a key regulator in DOX-induced pyroptosis and highlighted the related role of Caspase-3 activation. Furthermore, DOX treatments induced intracellular accumulation of ROS, stimulated the phosphorylation of JNK, and Caspase-3 activation, subsequently. In conclusion, the study suggests that GSDME triggered DOX-induced pyroptosis in the caspase-3 dependent reactions through the ROS/JNK signalling pathway. Additionally, it showed that the DOX-induced cardiotoxicity and pyroptosis in breast cancer cells can be minimized by reducing the protein level of GSDME; thus, these outcomes provide a new research target and implications for the anticancer investigations and therapeutic applications.  相似文献   

19.
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd−/− cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd−/− cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号