首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The capture of flying insects by foraging dragonflies is a highly accurate, visually guided behavior. Rather than simply aiming at the prey’s position, the dragonfly aims at a point in front of the prey, so that the prey is intercepted with a relatively straight flight trajectory. To better understand the neural mechanisms underlying this behavior, we used high-speed video to quantify the head and body orientation of dragonflies (female Erythemis simplicicollis flying in an outdoor flight cage) relative to an artificial prey object before and during pursuit. The results of our frame-by-frame analysis showed that during prey pursuit, the dragonfly adjusts its head orientation to maintain the image of the prey centered on the “crosshairs” formed by the visual midline and the dorsal fovea, a high acuity streak that crosses midline at right angles about 60° above the horizon. The visual response latencies to drifting of the prey image are remarkably short, ca. 25 ms for the head and 30 ms for the wing responses. Our results imply that the control of the prey-interception flight must include a neural pathway that takes head position into account.  相似文献   

2.
To determine whether perching dragonflies visually assess the distance to potential prey items, we presented artificial prey, glass beads suspended from fine wires, to perching dragonflies in the field. We videotaped the responses of freely foraging dragonflies (Libellula luctuosa and Sympetrum vicinum—Odonata, suborder Anisoptera) to beads ranging from 0.5 mm to 8 mm in diameter, recording whether or not the dragonflies took off after the beads, and if so, at what distance. Our results indicated that dragonflies were highly selective for bead size. Furthermore, the smaller Sympetrum preferred beads of smaller size and the larger Libellula preferred larger beads. Each species rejected beads as large or larger than their heads, even when the beads subtended the same visual angles as the smaller, attractive beads. Since bead size cannot be determined without reference to distance, we conclude that dragonflies are able to estimate the distance to potential prey items. The range over which they estimate distance is about 1 m for the larger Libellula and 70 cm for the smaller Sympetrum. The mechanism of distance estimation is unknown, but it probably includes both stereopsis and the motion parallax produced by head movements.  相似文献   

3.
1. We observed that the dragonfly species Sympetrum flaveolum, S. striolatum, S. sanguineum, S. meridionale and S. danae were attracted by polished black gravestones in a Hungarian cemetery. 2. The insects showed the same behaviour as at water: (i) they perched persistently in the immediate vicinity of the chosen gravestones and defended their perch against other dragonflies; (ii) flying individuals repeatedly touched the horizontal surface of the shiny black tombstones with the ventral side of their body; (iii) pairs in tandem position frequently circled above black gravestones. 3. Tombstones preferred by the dragonflies were in the open and had an area of at least 0.5 m2 with an almost horizontal, polished, black surface and with at least one perch in their immediate vicinity. 4. Using imaging polarimetry, we found that the black gravestones, like smooth water surfaces, reflect highly and horizontally polarized light. 5. In double‐choice field experiments with various test surfaces, we showed that the dragonflies attracted to shiny black tombstones display positive polarotaxis and, under natural conditions, detect water by means of the horizontally polarized reflected light. This, and the reflection‐polarization characteristics of black gravestones, explain why these dragonflies are attracted to black tombstones. 6. If females attracted to the black gravestones oviposit on them, the latter constitute ecological traps for dragonflies that are not close to water.  相似文献   

4.
The mechanisms of aposematism (unprofitability of prey combined with a conspicuous signal) have mainly been studied with reference to vertebrate predators, especially birds. We investigated whether dragonflies, Aeshna grandis, avoid attacking wasps, Vespula norwegica, which are an unprofitable group of prey for most predators. As a control we used flies that were painted either black or with yellow and black stripes. The dragonflies showed greater aversion to wasps than to flies. Black-and-yellow-striped flies were avoided more than black ones, suggesting that aposematic coloration on a harmless fly provides a selective advantage against invertebrate predators. There was no significant difference in reactions to black-painted and black-and-yellow wasps, indicating that, in addition to coloration, some other feature in wasps might deter predators. In further experiments we offered dragonflies artificial prey items in which the candidate warning signals (coloration, odour and shape) were tested separately while other confounding factors were kept constant. The dragonflies avoided more black-and-yellow prey items than solid black or solid yellow ones. However, we found no influence of wasp odour on dragonfly hunting. Dragonflies were slightly, but not significantly, more reluctant to attack wasp-shaped prey items than fly-shaped ones. Our results suggest that the typical black-and-yellow stripes of wasps, possibly combined with their unique shape, make dragonflies avoid wasps. Since black-and-yellow stripes alone significantly decreased attack rate, we conclude that even profitable prey species (i.e. Batesian mimics) are able to exploit the dragonflies' avoidance of wasps. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

5.
Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills (Alca torda,= 5, from Fair Isle, UK) and common guillemots (Uria aalge,= 2 from Fair Isle and = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive (= 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives (= 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.  相似文献   

6.
Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.  相似文献   

7.
Heikki Hirvonen  Esa Ranta 《Oecologia》1996,106(3):407-415
We investigated foraging behaviour of larval dragonflies Aeshna juncea in order to examine the significance of prey density and body size in predator-prey dynamics. A. juncea were offered separately three size-classes of Daphnia magna at low and high densities. The data were collected with direct observations of the foraging individuals. We found that large A. juncea larvae could better enhance their intake of prey biomass as prey size and prey density increased than their smaller conspecifics. However, increasing feeding efficiency of both larval instars was constrained by declining attack success and search rate with increasing prey size and density. With small D. magna, in contrast to large A. juncea, small A. juncea increased their searching efficiency as prey density increased keeping D. magna mortality rate at a constant level. In a predator-prey relationship this indicates stabilizing potential and feeding thresholds set by both prey density and prey-predator size ratio. Attack success dropped with prey size and density, but did not change in the course of the foraging bout. For both A. juncea sizes prey handling times increased as more medium and large prey were eaten. The slope of the increase became steeper with increasing prey-predator size ratio. These observations indicate that components of the predator-prey relationship vary with prey density, contrary to the basic assumptions of functional response equations. Moreover, the results suggest that the effects of prey density change during the ontogeny of predators and prey.  相似文献   

8.
Feeding preference experiments were conducted to determine the feeding habits of Abedus herberti (Heteroptera, Belostomatidae) and Thermonectus marmoratus (Coleoptera, Dytiscidae), two large insects in Sycamore Creek, an intermittent Sonoran desert stream, Arizona, U.S.A. Numbers of live versus dead prey consumed were tested between and across three prey sizes. Five prey species were offered simultaneously (5 live and 5 dead specimens) in each size class. We found that A. herberti preferred live prey of small and medium size, but it chose mainly dead prey in the large size class. These results fitted the model of size-selective predation (Zaret, 1980). Size dependent predators selected prey of increased size, according to their visibility, but only up to where difficulty in handling and probability of escape affect successful consumption. Snails were the most preferred prey of A. herberti. By contrast, T. marmoratus consumed only dead prey of all sizes, but it preferred soft organisms with thin cuticle, such as immature larvae of some mayflies, beetles, dragonflies or fishes.  相似文献   

9.
Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well. Received: 17 April 1996 / Accepted: 18 September 1996  相似文献   

10.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   

11.
The dragonfly, (Aeshna, Anax) which feeds on small flying insects, requires a visual system capable of signaling the movements of airborne prey. A group of 8 descending feature detectors in the dragonfly are tuned exclusively to moving contrasting objects. These target-selective descending neurons project from the brain to the thoracic ganglia. Their activity drives steering movement of the wings.In this study, we recorded target-selective descending neuron activity intracellularly.To define their receptive fields, we recorded responses to the movement of black square targets projected onto a screen in front of the animal. Each neuron was identified by dye injection.Target-selective descending neurons exhibit several receptive field properties. Our results show that they are strongly directionally selective. Two TSDNs, exclusively tuned to small targets, have receptive fields restricted to visual midline. Others, which are not selective for target size, have asymmetric receptive fields centered laterally.We suggest that the behavioral function of these specialized feature detectors is to steer the dragonfly during prey-tracking so as to fix the position of the prey image on the retina. If the dragonfly maintains a constant visual bearing to its prey over time it will intercept its prey.Abbreviations TSDN target-selective descending neuron - DCMD descending contralateral movement detector - MDT median dorsal tract - DIT dorsal intermediate tract - VNC ventral nerve cord  相似文献   

12.
Using DNA barcoding and stable isotope analysis, we identified adult dragonfly prey items from the fecal pellets of five dragonfly species—Nannophya pygmaea, Ischnura asiatica, Sympetrum eroticum, Orthetrum albistylum, and Anax parthenope—collected from a mountain bog located in south‐eastern South Korea. Twelve operational taxonomic units (OTUs) belonging to four orders, Coleoptera, Diptera, Hemiptera, and Lepidoptera, were identified as prey items of adult dragonflies using DNA barcoding. Among prey items, Dipterans were the most common, comprising seven of the 10 OTUs. Based on stable isotope analysis, adult dragonflies and their nymphs were among the most numerous predators in both aquatic and terrestrial habitats. Additionally, dragonfly species with smaller adult sizes had different isotopic compositions to those reaching larger adult sizes. Both δ15N and δ13C values were significantly lower in smaller species than in larger species, indicating differences in their trophic levels and carbon sources.  相似文献   

13.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

14.
Although the effects of shifting fire regimes on bird populations have been recognized as important to ecology and conservation, the consequences of fire for trophic interactions of avian species – and raptors in particular – remain relatively unknown. Here, we found that within national parks with long‐standing (40+ years) fire management programmes, California Spotted Owls Strix occidentalis occidentalis consumed predominantly Woodrats Neotoma spp. and Pocket Gophers Thomomys spp.; however, in contrast to our predictions, when their territories experienced more extensive and frequent fire, Spotted Owls consumed proportionally more Flying Squirrels Glaucomys oregonensis. We hypothesize this finding could have been driven by either changes to prey abundance following fires (e.g. increases in flying squirrels) or changes to prey availability (e.g. shifts in forest structure or flying squirrel spatial distribution that increased predation upon them by owls). Our work thus demonstrates that fire may have unexpected consequences for the trophic interactions of raptor species and provides valuable information for the conservation of Spotted Owls in fire‐prone forest landscapes.  相似文献   

15.
Predators of dangerous prey risk being injured or killed in counter-attacks and hence may use risk-reducing predatory tactics. Spiders are often dangerous predators to insects, but for a few, including Stenolemus bituberus assassin bugs, web-building spiders are prey. Despite the dangers of counter-attack when hunting spiders, there has been surprisingly little investigation of the predatory tactics used by araneophagic (spider-eating) insects. Here, we compare the pursuit tendency, outcome and predatory tactics of S. bituberus against five species of web-building spider. We found that S. bituberus were most likely to hunt and capture spiders from the genus Achaearanea, a particularly common prey in nature. Capture of Achaearanea sp. was more likely if the prey spider was relatively small, or if S. bituberus was in poor condition. S. bituberus used two distinct predatory tactics, ‘stalking’, in which they slowly approached the prey, and ‘luring’, in which they attracted spiders by manipulating the web to generate vibrations. Tactics were tailored to the prey species, with luring used more often against spiders from the genus Achaearanea, and stalking used more often against Pholcus phalangioides. The choice of hunting tactic used by S. bituberus may reduce the risk posed by the prey spider.  相似文献   

16.
17.
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.  相似文献   

18.
Dragonflies perform dramatic aerial manoeuvres when chasing targets but glide for periods during cruising flights. This makes dragonflies a great system to explore the role of passive stabilizing mechanisms that do not compromise manoeuvrability. We challenged dragonflies by dropping them from selected inverted attitudes and collected 6-degrees-of-freedom aerial recovery kinematics via custom motion capture techniques. From these kinematic data, we performed rigid-body inverse dynamics to reconstruct the forces and torques involved in righting behaviour. We found that inverted dragonflies typically recover themselves with the shortest rotation from the initial body inclination. Additionally, they exhibited a strong tendency to pitch-up with their head leading out of the manoeuvre, despite the lower moment of inertia in the roll axis. Surprisingly, anaesthetized dragonflies could also complete aerial righting reliably. Such passive righting disappeared in recently dead dragonflies but could be partially recovered by waxing their wings to the anaesthetised posture. Our kinematics data, inverse dynamics model and wind-tunnel experiments suggest that the dragonfly''s long abdomen and wing posture generate a rotational tendency and passive attitude recovery mechanism during falling. This work demonstrates an aerodynamically stable body configuration in a flying insect and raises new questions in sensorimotor control for small flying systems.  相似文献   

19.
Aggressive behavior of Pachydiplax longipennis during foraging was quantified by observing focal individuals on arrays of artificial perches. Pachydiplax apparently aggressively defend, for up to several hours at a time, one or a few feeding perches. Seventeen percent of all behaviors included agonistic actions, e.g., chasing or physical contact. The frequency of interactions was correlated positively with ambient temperature, solar radiation, prey density and density of other dragonflies. Both sexes initiated and responded to intra- and interspecific aggression; intraspecific interactions were more intense, however. Males had significantly higher interaction rates and fighting success than females, and intraspecific male–male contests were particularly intense. When prey were visibly localized, contest winners commonly gained perches closer to the prey swarm, and aggressive behavior was apparently correlated with feeding opportunity. Despite the frequency of aggression, these dragonflies allocated only about 19 s, on average, to agonistic behavior during 30-min observation periods. This and other costs appear small compared to foraging benefits of occupying a favorable perch, although at a very high interaction intensity high energy costs and lower intake reduce the net energy gain.  相似文献   

20.
Summary Two of the parameters which determine the rate at which prey are encountered by a predator, i.e. the distance at which a predator responds to a prey and its rate of movement relative to the prey's, were determined for all the stages of five species of Gerris using gerrids and Drosophila as prey. These parameters allowed calculation of the swath, or encounter path, a gerrid would cover as it moved across the water surface. Gerris species prefer to attack live prey in front of them, and tend to ignore prey if the attack requires a turn of more than 100°. Hunger was found to affect the responsive angle required to clicit an attack by G. remigis, and regardless of species, smaller gerrids required the prey to be closer before an attack was initiated. The rate of movement in Gerris was measured as a function of stride length and the number of strides made per unit time. Stride length varied according to the length of the mesothoracic leg, and the frequency of movement was observed to be species specific. G. remigis, a stream species, moved 4–6 times as often as the four other species studied, all of which are characteristically found on non-moving water surfaces. Within a species, gerrid size had no significant effect on the frequency of movement, although there was a tendency for smaller gerrids to move less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号