首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The unfolded protein response (UPR) is a cellular recovery mechanism activated by endoplasmic reticulum (ER) stress. The UPR is coordinated with the ER-associated degradation (ERAD) to regulate the protein load at the ER. In the present study, we tested how membrane protein biogenesis is regulated through the UPR in epithelia, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a model. Pharmacological methods such as proteasome inhibition and treatment with brefeldin A and tunicamycin were used to induce ER stress and activate the UPR as monitored by increased levels of spliced XBP1 and BiP mRNA. The results indicate that activation of the UPR is followed by a significant decrease in genomic CFTR mRNA levels without significant changes in the mRNA levels of another membrane protein, the transferrin receptor. We also tested whether overexpression of a wild-type CFTR transgene in epithelia expressing endogenous wild-type CFTR activated the UPR. Although CFTR maturation is inefficient in this setting, the UPR was not activated. However, pharmacological induction of ER stress in these cells also led to decreased endogenous CFTR mRNA levels without affecting recombinant CFTR message levels. These results demonstrate that under ER stress conditions, endogenous CFTR biogenesis is regulated by the UPR through alterations in mRNA levels and posttranslationally by ERAD, whereas recombinant CFTR expression is regulated only by ERAD. endoplasmic reticulum-associated degradation; messenger ribonucleic acid  相似文献   

2.
3.
4.
Type-2 diabetes mellitus (T2D) represents an important metabolic disorder, firmly connected to obesity and low level of chronic inflammation caused by deregulation of fat metabolism. The convergence of chronic inflammatory signals and nutrient overloading at the endoplasmic reticulum (ER) leads to activation of ER-specific stress responses, the unfolded protein response (UPR). As obesity and T2D are often associated with impaired wound healing, we investigated the role of UPR in the pathologic of diabetic-impaired cutaneuos wound healing. We determined the expression patterns of the three UPR branches during normal and diabetes-impaired skin repair. In healthy and diabetic mice, injury led to a strong induction of BiP (BiP/Grp78), C/EBP homologous protein (CHOP) and splicing of X-box-binding protein (XBP)1. Diabetic-impaired wounds showed gross and sustained induction of UPR associated with increased expression of the pro-inflammatory chemokine macrophage inflammatory protein (MIP)2 as compared to normal healing wounds. In vitro, treatment of RAW264.7 macrophages with tunicamycin, and subsequently stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ enhances MIP2 mRNA und protein expression compared to proinflammatory stimulation alone. However, LPS/IFNγ induced vascular endothelial growth factor (VEGF) production was blunted by tunicamycin induced-ER stress.  相似文献   

5.
6.
7.
8.
9.
The unfolded protein response (UPR) is a complex network of sensors and target genes that ensure efficient folding of secretory proteins in the endoplasmic reticulum (ER). UPR activation is mediated by three main sensors, which regulate the expression of hundreds of targets. UPR activation can result in outcomes ranging from enhanced cellular function to cell dysfunction and cell death. How this pathway causes such different outcomes is unknown. Fatty liver disease (steatosis) is associated with markers of UPR activation and robust UPR induction can cause steatosis; however, in other cases, UPR activation can protect against this disease. By assessing the magnitude of activation of UPR sensors and target genes in the liver of zebrafish larvae exposed to three commonly used ER stressors (tunicamycin, thapsigargin and Brefeldin A), we have identified distinct combinations of UPR sensors and targets (i.e. subclasses) activated by each stressor. We found that only the UPR subclass characterized by maximal induction of UPR target genes, which we term a stressed-UPR, induced steatosis. Principal component analysis demonstrated a significant positive association between UPR target gene induction and steatosis. The same principal component analysis showed significant correlation with steatosis in samples from patients with fatty liver disease. We demonstrate that an adaptive UPR induced by a short exposure to thapsigargin prior to challenging with tunicamycin reduced both the induction of a stressed UPR and steatosis incidence. We conclude that a stressed UPR causes steatosis and an adaptive UPR prevents it, demonstrating that this pathway plays dichotomous roles in fatty liver disease.KEY WORDS: Unfolded protein response, Steatosis, Zebrafish, Tunicamycin, Thapsigargin, ER stress, Fatty liver disease  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Endoplasmic reticulum (ER) stress is induced by the accumulation of unfolded and misfolded proteins in the ER. Although apoptosis induced by ER stress has been implicated in several aging‐associated diseases, such as atherosclerosis, it is unclear how aging modifies ER stress response in macrophages. To decipher this relationship, we assessed apoptosis in macrophages isolated from young (1.5–2 months) and aged (16–18 months) mice and exposed the cells to the ER stress inducer tunicamycin. We found that aged macrophages exhibited more apoptosis than young macrophages, which was accompanied by reduced activation of phosphorylated inositol‐requiring enzyme‐1 (p‐IRE1α), one of the three key ER stress signal transducers. Reduced gene expression of x‐box binding protein 1 (XBP1), a downstream effector of IRE1α, enhanced p‐IRE1α levels and reduced apoptosis in aged, but not young macrophages treated with tunicamycin. These findings delineate a novel, age‐dependent interaction by which macrophages undergo apoptosis upon ER stress, and suggest an important protective role of IRE1α in aging‐associated ER stress‐induced apoptosis. This novel pathway may not only be important in our understanding of longevity, but may also have important implications for pathogenesis and potential treatment of aging‐associated diseases in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号