首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The solitary endoparasitoid, Microplitis rufiventris, attacks and can develop in earlier instars of Spodoptera littoralis larvae with preference to third‐instar larvae. We used the last stadium (sixth instar), a stage which is not naturally parasitized. The newly moulted larvae (0–3 h old) of this stadium were more acceptable for parasitization by the wasp females than the older ones (24 h old). Parasitization by M. rufiventris wasp of last instar S. littoralis larvae leads to dose (no. of eggs + parasitoid factors)‐dependent effects which were more pronounced at 20°C than at 27°C. A single oviposition into a sixth instar host larva resulted in normal development of the host. However, superparasitization increased the proportions of developmentally arrested hosts and number of live wasp larvae. Development of supernumerary individuals of the parasitoid in the host larva leads to dose‐related adverse effects on host growth and development. The present study may provide interesting opportunities for studying the physiological bases of host–parasitoid interactions and parasitoid intra‐specific competition in the biological system considered.  相似文献   

2.
3.
The mealybug parasitoid Anagyrus spec. nov near sinope (Hymenoptera: Encyrtidae) is an undescribed parasitoid of the Madeira mealybug, Phenacoccus madeirensis Green (Homoptera: Pseudococcidae). We investigated the preference of Anagyrus spec. nov near sinope for six developmental stadia (first‐ and second‐instar nymphs, third‐instar immature females, third‐ or fourth‐instar immature males, pre‐reproductive adult females, and ovipositing adult females) of P. madeirensis and the fitness consequences of the host stage selection behavior. In the no‐choice test, Anagyrus spec. nov near sinope parasitized and completed development in all host stadia except third‐instar immature males. When all host stadia were offered simultaneously, the parasitoids preferred third‐instar immature and pre‐reproductive adult females. Dissection of the stung mealybugs revealed that the clutch size (number of eggs per host) was approximately four and three in the third‐instar and pre‐reproductive females, respectively, and one egg per first‐instar nymph. Parasitoids emerged from P. madeirensis parasitized at third‐instar or pre‐reproductive adult female completed development in the shortest duration, achieved a higher progeny survival rate, larger brood and body size, and the lowest proportion of males. We showed that the continued development of mealybugs had significant influence on the fitness of the parasitoids. Although deposited as eggs in first‐ or second‐instar nymphs, parasitoids emerged from mummies that had attained third‐instar or adult development achieved similar progeny survival rate, brood size, body size, and sex ratio as those parasitoids deposited and developed in third‐instar or adult mealybugs. By delaying larval development in young mealybugs, Anagyrus spec. nov near sinope achieved higher fitness by allowing the parasitized mealybugs to grow and accumulate body size and resources. We suggest that the fitness consequence of host stage selection of a koinobiont parasitoid should be evaluated on both the time of parasitism and the time of mummification.  相似文献   

4.
Many endoparasitoids develop successfully within a range of host instars. Parasitoid survival is highest when parasitism is initiated in earlier host instars, due to age-related changes in internal (physiological) host defences. Most studies examining fitness-related costs associated with differences in host instar have concentrated on the parasitoid, ignoring the effects of parasitism on the development of surviving hosts that have encapsulated parasitoid eggs. A laboratory experiment was undertaken examining fitness-related costs associated with encapsulation of Venturia canescens (Hymenoptera: Ichneumonidae) eggs by fifth (L5) instar larvae of Corcyra cephalonica (Lepidoptera: Pyralidae). Growth and development of both host and parasitoid were monitored in C. cephalonica larvae containing 0, 1, 2, or 4 parasitoid eggs. Adult size and fecundity of C. cephalonica did not vary with the number of eggs per host. However, there was a distinct increase in host mortality with egg number, although most parasitoids emerged from hosts containing a single egg. The most dramatic effect on the host was a highly significant increase in development time from parasitism to adult eclosion, with hosts containing 4 parasitoid eggs taking over 2.5 days longer to complete development than unparasitized larvae. The egg-to-adult development time and size of adult V. canescens did not vary with egg number per host, as demonstrated in a previous experiment using a different host (Plodia interpunctella). The results described here show that there are fitness-related costs to the host associated with resistance to parasitism.  相似文献   

5.
1. The study reported here examined growth and developmental interactions between the gregarious larval koinobiont endoparasitoid Cotesia glomerata (Hymenoptera: Braconidae) and two of its hosts that vary considerably in growth potential: Pieris rapae and the larger P. brassicae (Lepidoptera: Pieridae). At pupation, healthy larvae of P. brassicae are over twice as large, in terms of fresh body mass, as those of P. rapae. 2. Clutch size of C. glomerata was manipulated artificially, and the relationship between parasitoid burden and the maximum weight of the parasitised host (= host–parasitoid complex) was measured. In both hosts, the maximum complex weight was correlated positively with parasitoid burden. Compared with unparasitised hosts, however, the growth of P. rapae was increased at significantly lower parasitoid burdens than in P. brassicae. Emerging wasp size was correlated negatively with parasitoid burden in both host species, whereas development time was less affected. 3. After larval parasitoid egress, the weight of the host carcass increased slightly, but not significantly, with parasitoid burden, although there was a strong correlation between the proportion of host mass consumed by C. glomerata larvae during development and parasitoid burden. 4. Clutch size was generally correlated positively with instar parasitised in both hosts, and greater in P. brassicae than in P. rapae. Sex ratios were much more female biased in L1 and L2 P. rapae than in all other host classes. Adult parasitoid size was correlated inversely with host instar at parasitism, and wasps emerging from P. brassicae were larger, and completed development faster, than conspecifics emerging from P. rapae. 5. The data reveal that parasitism by C. glomerata has profound species‐specific effects on the growth of both host species. Consequently, optimality models in which host quality is often based on host size at parasitism or unparasitised growth potential may have little utility in describing the development of gregarious koinobiont endoparasitoids. The results of this investigation are discussed in relation to the potential effectiveness of gregarious koinobionts in biological control programmes.  相似文献   

6.
Reproductive biology including mating, adult longevity, fecundity and development of the tachinid fly Zenillia dolosa was investigated for optimizing rearing procedures using Mythimna separata as a host in the laboratory. Females lay microtype eggs containing a first instar larva on food plants of the host and then the eggs must be ingested by the host for parasitization. Mating success was 58.5% with mating duration of 80.7 min. Mating was most successful when day 0–1 females were kept with day 2–4 male flies. Female body size was positively correlated with its fecundity but not with longevity. However, females that survived longer produced more eggs during their lifetime. Parasitoids successfully developed in 4th to 6th instar host larvae. Host instars at the time of parasitoid egg ingestion significantly influenced development time of the immature parasitoid, but did not affect body size of the emerging parasitoid. We suggest that pairing newly emerged females with day 2–4 males should result in higher mating success and using the last instar hosts for parasitization should minimize development time of the parasitoid for rearing.  相似文献   

7.
8.
The robber fly Mallophora ruficauda Weidemann (Diptera: Asilidae) is an important pest of apiculture in the Pampas of Argentina. As adults, they prey on honey bees and other insects, whereas the larvae are ectoparasitoids of Scarabaeidae grubs. Females of M. ruficauda lay eggs in grassland where the larvae drop to the ground after being wind‐dispersed and burrow underground searching for their hosts. A temporal asynchrony exists between the appearance of the parasitoid larvae and the host, with the parasitoid appearing earlier than the host. The present study investigates whether a strategy of synchronization with the host exists in M. ruficauda and determines which of the larval instars are responsible for it. Survival patterns and duration of the immature stages of the parasitoid are investigated to determine whether there is a modulation in the development at any time that could reduce the asynchrony. Experiments are carried out to determine the survival and duration of free‐living larval stadia in the absence of cues associated with the host. It is established that the first instar is capable of moulting to the second instar without feeding and in the absence of any cues related to the host, a unique event for parasitoids. Also, the first instar of M. ruficauda moults to the second stage within a narrow temporal window, and the second instar never moults in the absence of the host. After parasitizing a host, the second instar has the longest lifespan and is the most variable with respect to survival compared with the rest of the instars. All larval instars, except for those in the last (fifth) stadium, have a similar rate of mortality to that of second‐instar larvae. Additionally, it is established that the host is killed during the fourth (parasitoid) stadium and that the first‐ and fifth‐larval instars develop independently of the host. Finally, possible mechanisms that could aid in compensating for the asynchrony between the parasitoid and the host, promoting the host–parasitoid encounter, are discussed.  相似文献   

9.
  • 1 The larvae of many gregarious parasitoid species are usually non‐aggressive when they develop in or on a host, but those of Metaphycus flavus are one of the few exceptions known. Herein we describe their aggressive behaviour and the conditions under which it occurs, using observations in which larval development and physical conflict within parasitised and superparasitised hosts were mapped daily.
  • 2 Metaphycus flavus larvae often engaged in physical conflict that resulted in consumption of the losing larvae (= cannibalism ) in superparasitised hosts, whereas such conflict and consumption occurred rarely when a single brood developed in a host.
  • 3 Cannibalism among M. flavus larvae only occurred after the host resources had become scarce. Typically it occurred after the sixth day of development (fourth‐instar larvae) when the larvae in a clutch had separated from their aeroscopic plate and were freed of their attachment to the host's cuticle.
  • 4 Female larvae in the initial clutch appeared more aggressive than male larvae when a second clutch was allocated 4 h after the first clutch. The probability of a larva being attacked and consumed by a brood mate increased as the number of larvae increased in the host. This partial tolerance might allow the members of the initial brood to defend themselves from offspring of a superparasitising female (= competitors ). Such post‐ovipositional regulation of brood size might be interpreted as high‐density intolerance among female offspring.
  相似文献   

10.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

11.
Adult females of the larval parasitoidCotesia glomerata (L.) respond to chemical cues associated with feeding damage inflicted on cabbage plants by its host,Pieris brassicae (L.). The use of these infochemicals by the parasitoid during selection of the most suitable host instar was investigated. The parasitoid can successfully parasitize first-instar host larvae, while contacts with fifth-instar larvae are very risky since these caterpillars react to parasitization attempts by biting, spitting, and hitting, resulting in a high probability of the parasitoid being seriously injured or killed. Observations of the locomotor behavior of individual wasps on leaves with feeding damage inflicted by the first and the fifth larval instars and on host silk and frass showed that several cues affect the duration of searching by the parasitoids after reaching a leaf: cues on the margin of the feeding damage and cues in the host frass and silk. Whole frass, silk, and hexane extracts of frass obtained from first-instar elicited parasitoid's searching behavior significantly longer than frass, silk, and hexane extract of frass from the fifth instar. The results demonstrate thatC. glomerata can discriminate between first instars, which are more suitable hosts, and fifth instars ofP. brassicae without contacting the caterpillars, by exploiting instar-related cues.  相似文献   

12.
The effects of host age on parasitoid reproductive capacity are studied using the pteromalid parasitoid Lariophagus distinguendusFörster and its bruchid hosts, Callosobruchus chinensis (L.) and C. maculatus (F.). A series of experiments were performed to investigate relationships between age and size of host parasitized and the developmental period of pre-imaginal progeny, sex ratio, female size, longevity, fecundity and oviposition rate. There was no effect of host size on preimaginal parasitoid developmental period. Sex ratio varied from less than 5% females from young (small) hosts to 60% females from mature (large) hosts. Adult size, female longevity, fecundity, and oviposition rate were also positively related to host age. Females provided mature hosts lived longer than those provided either young hosts or no hosts, possibly because of an increased ability to host-feed from the larger hosts. The implications of these findings to parasitoid population reproductive capacity and host-parasitoid synchrony are discussed.  相似文献   

13.
Abstract. Laboratory studies investigated the development of teratocytes derived from the eggs of the parasitoid Meteous gyrator (Thun.) in its host, the tomato moth Lacanobia oleracea (L.). At hatching, each parasitoid egg produced an average of approximately 1000 teratocytes, but this number declined to approximately 400 during the course of parasitism. The teratocytes increased in size markedly, such that 7 days after egg hatch their mean diameter was approximately four times that of the cells immediately after dissociation. The haemolymph of parasitized hosts had reduced phenoloxidase activity, and teratocytes inhibited phenoloxidase activity when coincubated with plasma from nonparasitized hosts. The injection of teratocytes into nonparasitized fifth‐instar L. oleracea larvae suppressed growth and induced a supernumerary moult in some larvae. A number of parasitism‐specific proteins were detected in the haemolymph of parasitized hosts, and incubation of teratocytes in culture media indicated that these cells were a source of at least two of these proteins.  相似文献   

14.
To study the dynamics of stage-dependent immune responses in Spodoptera littoralis (Boisd.) larvae (Lepidoptera: Noctuidae), single and superparasitism experiments were carried out using the parasitoid Microplitis rufiventris Kok. (Braconidae: Hymenoptera). Compared to younger (preferred) host larvae, the older (non-preferred) host larvae displayed a vigorous humoral response that often damaged and destroyed the single wasp egg or larva. Superparasitism and host age altered both the cellular and humoral immune responses. Younger host larvae showed a stronger encapsulation response compared to older host larvae. Moreover encapsulation rates in younger hosts (e.g., second instar) decreased with increasing numbers of parasitoid eggs deposited/larvae. In older larvae, the encapsulation rate was low in fourth, less in fifth and absent in sixth instar hosts. Conversely, the order and magnitude of the cellular immune response in S. littoralis hosts were highest in second instar larvae with the first instar larvae being a little lower. The immune response steadily decreased from the third through to the fifth instar and was least obvious in the sixth instar. In contrast, the general humoral immune response was most pronounced in sixth instar larvae and diminished towards younger stages. The results suggest that both cellular and humoral responses are stage-dependent. Wasp offspring in younger superparasitized host larvae fought for host supremacy with only one wasp surviving, while supernumerary wasp larvae generally survived in older superparasitized larvae, but were unable to complete development. Older instars seem to have a method for immobilizing/killing wasp larvae that is not operating in the younger instars.  相似文献   

15.
Most attention to size‐time trade‐offs of insects has focused on herbivore risk, with considerably less attention paid to parasitoids. Here, we focus on parasitoid risk, comparing the fates of unparasitised herbivore hosts and parasitised hosts that protect the parasitoids. Success of a koinobiont parasitoid (host grows after parasitisation) depends on maintaining a delicate balance with its host, thereby ensuring its own survival while the host grows. To evaluate growth rate–mortality rate relationships of host and parasitoid, we compared several aspects of the growth, phenology, and behaviour of unparasitised fern moth [Herpetogramma theseusalis (Walker) (Lepidoptera: Crambidae)] larvae and larvae parasitised by Alabagrus texanus (Cresson) (Hymenoptera: Braconidae), a solitary koinobiont (one parasitoid per host) wasp. Host larvae feed and construct shelters on sensitive fern, Onoclea sensibilis L. (Dryopteridaceae). Alabagrus texanus parasitise early‐instar moths in late summer, which overwinter in their host, emerging in mid‐summer to pupate and eclose. During the autumn following hatching and the immediately following spring, parasitised and unparasitised moth larvae did not differ in size, took similar time to choose between satisfactory and unsatisfactory foods, and built similar shelters. Prior to any other changes noted, more parasitised than unparasitised larvae also died when severely starved. Parasitised larvae subsequently grew less and pupated later than unparasitised ones (small size, slow growth), but consumed similar amounts of food. Although the numerically dominant parasitoid of fern moths, we concluded that Atexanus do not efficiently exploit their hosts.  相似文献   

16.
The study investigates differences in the oviposition pattern of a braconid parasitoid, Cotesia glomerata (Linn.) in Pieris brassicae (Linn.) in relation to their use of different cruciferous food plants. The response of P. brassicae to superparasitism and consequences for the parasitoid were examined in order to elucidate the ecological significance of this behaviour. Female parasitoid located various crucifers and searched for host more frequently almost on all the host plants tested i.e. cabbage, cauliflower, Chinese cabbage, broccoli and radish. According to the estimated relative number of female locating hosts, cabbage was the most attractive plant for C. glomerata and total number of eggs laid in host larvae feeding on it was higher than in larvae feeding on other plants. Laboratory experiments demonstrated that superparasitism reduced survivorship of P. brassicae larvae. Superparasitism lengthened parasitoid development and prolonged the feeding period of host larvae. Sex ratio and the body weight of emergent wasps correlated negatively with brood size. Despite a trade-off between maximising brood size and optimising the fitness of individual offspring, two or three ovipositions on P. brassicae larvae resulted in a greater female dry mass than did a single oviposition on the host. Thus, superparasitism might be of adaptive significance under certain circumstances, especially when host density is low and unparasitized hosts are rare in a habitat.  相似文献   

17.
Microplitis kewleyi Muesebeck is a gregarious internal parasite of larvae of the black cutworm Agrotis ipsilon (Hufnagel). Studies of the biology of the parasite revealed that there was an inverse relationship between host instar and parasite preference. Duration of development from egg to pupa ranged from 18 days at 27°C to 68.7 days at 16°C. Development from egg to pupa took 13.5–21.6 days when fourth and first instar host larvae, respectively, were parasitized. A larger number of parasites emerged from hosts parasitized in the fourth instar (22.4) than the first instar (11.5). Parasite pupation occurred when the host was in the fifth/sixth instar, depending on the instar parasitized. Thirty‐nine per cent of host larvae exposed as first instars to parasites died before parasite emergence. This decreased to 0% for host larvae exposed as fourth instars. The sex ratio was 1:1.2 (M:F). Thirty‐seven per cent of hosts exposed diurnally were stung, compared to 24% exposed nocturnally. Mean daily progeny was highest (12) on the first day, decreasing to zero after 20 days. Percent host parasitism was also highest on the first day (35%) decreasing to nearly 0% after 18 days. There appear to be three parasite larval instars. Host larvae often remained alive after parasite emergence.  相似文献   

18.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

19.
Host stage selection and sex allocation by Gyranusoidea tebygi Noyes (Hym,, Encyrtidae) were studied in choice and no-choice experiments in the laboratory. The parasitoid reproduced on first, second, and third instars of the mango mealybug, Rastrococcus invadens Williams (Hem., Pseudococcidae), and it avoided hosts that were already parasitized. Host feeding was occasionally observed. Sex ratios of the offspring produced by individual wasps were highly biased in favor of females, whereas the sex ratio of groups of wasps foraging under crowded conditions varied from male biased in smaller hosts to female biased in larger hosts. Females had longer developmental times than males, developed faster in larger mealybugs than in smaller ones, and were always larger than males emerging from the same host instar. Their size increased with the instar of the host at oviposition. About 90% of all ovipositions in second and third instar nymphs resulted from an attack with multiple stings, starting with a sting in the head of the host for the most part. The function of these head stings is either to assess quality of the host or to subdue hosts prior to oviposition. Encounter rates, number of attacks, and number of stings during one attack increased, while ovipositions decreased with host instar. Time investment per oviposition and time spent preening increased with increasing host age because older hosts defended themselves more vigorously than younger ones. Thus, while fitness of the parasitoid increased with host size, fitness returns per time decreased. The implications of this host selection behavior for the biological control of the mango mealybug are discussed.  相似文献   

20.
1. Interspecific competition among hymenopteran parasitoids may shape their behavioural strategies for host resource exploitation. In order to reduce or prevent competition, many parasitoid species have evolved the ability to discriminate between unparasitised hosts and hosts parasitised by another parasitoid species (i.e. heterospecific host discrimination). However, discriminatory ability might be affected by host instar. 2. This study reports the first results on whether host instar can influence the use of heterospecific‐parasitised hosts by sympatric parasitoids of the genus Aphytis (Hymenoptera: Aphelinidae). 3. Aphytis melinus and Aphytis chrysomphali discriminated between unparasitised and heterospecific‐parasitised hosts when they found a third‐instar host (high quality), with a tendency to multi‐parasitise. However, this discrimination was not observed in the second instar (lower size). 4. The behavioural strategies adopted towards multi‐parasitise third‐instar hosts varied between both species. Aphytis chrysomphali reduced its clutch size in heterospecific‐parasitised hosts, whereas A. melinus tended to probe them for longer than healthy hosts. 5. Overall, our results highlight the importance of host instar in the study of intrinsic competition between parasitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号