首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
A Gram-negative, yellow-pigmented bacterial strain, designated IPC6T, was isolated from soil in an arid region of Goyang-si (Gyeonggi-do, South Korea). Cells were strictly aerobic, non-spore-forming, rod-shaped. The strain grew within a temperature range of 10–42°C (optimum, 30°C) and pH of 5.0–11.0 (optimum, pH 8.0) in the presence of 0–2% (w/v) NaCl. Phylogenetically, the novel strain was closely related to members of the Lysobacter genus based on 16S rRNA sequence similarity, and showed the highest sequence similarity to Lysobacter niastensis KACC 11588T (98.5%). The predominant fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c), with Q-8 identified as the major ubiquinone. The polar lipid content included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophospholipid, and an unidentified phospholipid. DNA-DNA hybridization results indicated that the strain IPC6T was distinct from Lysobacter niastensis KACC 11588T (37.9 ± 0.14%), Lysobacter panacisoli KACC 17502T (56.4 ± 0.13%), Lysobacter soli KCTC 22011T (8.1 ± 0.04%), Lysobacter gummosus KCTC 12132T (9.6 ± 0.03%), and Lysobacter cavernae KCTC 42875T (37.5 ± 0.14%), respectively. The DNA G + C content of the novel strain was 71.1 mol%. Based on the collective phenotypic, genotypic and chemotaxonomic data, the IPC6T strain is considered to represent a novel species in the genus Lysobacter, for which the name Lysobacter pedocola sp. nov. (= KCTC 42811T = JCM 31020T) is proposed.  相似文献   

2.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J9-6T, was isolated from beach soil on Jeju Island, South Korea. Strain 15J9-6T, grew at 10–30°C (optimum growth at 25°C) and pH 7–8 (optimum growth at pH 7) on R2A, NA, and TSA agar. Phylogenetically, the strain was closely related to members of the genus Spirosoma (92.3–90.1% 16S rRNA gene sequence similarities) and showed highest sequence similarity to Spirosoma panaciterrae DSM 21099T (92.3%). The G+C content of the genomic DNA of strain 15J9-6T was 45.7 mol%. The strain contained phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified phospholipid, and an unidentified lipid as the major polar lipids; menaquinone MK-7 as the predominant respiratory quinone and summed feature 3 (C16:1 ω6c/C16:1 ω7c; 30.1%), C16:1 ω5c (23.1%), iso C15:0 (13.3%), and C16:0 (8.4%) as the major fatty acids which supported the affiliation of strain 15J9-6T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J9-6T from recognized Spirosoma species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain 15J9-6T represents a novel species of the genus Spirosoma, for which the name Spirosoma daeguensis sp. nov. is proposed. The type strain is 15J9-6T (=KCTC 52036T =JCM 31995T)  相似文献   

3.
A polyphasic taxonomic study was carried out on strains PB105T and PB108 isolated from a grass soil in Korea. The cells of the strains were Gram-stain negative, non-spore-forming, non-motile, and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of these strains with Bacteroidetes, which showed high pairwise sequence similarities with Hymenobacter algoricola VUG-A23aT (99.2%), Hymenobacter fastidiosus VUG-A124aT (97.4%), and Hymenobacter daecheongensis Dae14T (96.9%). The phylogenetic analysis based on 16S rRNA gene sequences showed that the strains formed a clear phylogenetic lineage with the genus Hymenobacter. The major fatty acids were identified as C15:0 iso, C15:0 anteiso, C16:1 ω5c, C15:0 iso 3-OH, C17:0 iso 3-OH, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c/t), and summed feature 4 (C17:1 anteiso B and/or C17:1 iso I). The major cellular polar lipids were identified as phosphatidylethanolamine, an unidentified aminolipid, and two unidentified lipids. The respiratory quinone was identified as MK-7 and the genomic DNA G+C content was determined to be 64.5 mol% for strain PB105T and 64.1 mol% for strain PB108. DNA–DNA hybridization value of type strain PB105T with H. algoricola VUG-A23aT was 32.3% (reciprocal 39.2). Based on the combined genotypic and phenotypic data, we propose that strains PB105T and PB108 represent a novel species of the genus Hymenobacter, for which the name Hymenobacter daejeonensis sp. nov. is proposed. The type strain is PB105T (=?KCTC 52579T?=?JCM 31885T).  相似文献   

4.
A Gram-stain-positive, aerobic, non-motile, non-spore-forming, and rod-shaped bacterium, designated strain CHu64-6-1T, was isolated from a 67-cm-long sediment core collected from the Daechung Reservoir at a water depth of 17-m in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies placed the new isolate in the class Sphingobacteriia, and the isolate is notably most closely related to Flavihumibacter sediminis CJ663T (98.1% similarity), Flavihumibacter solisilvae 3-3T (97.8%), Flavihumibacter petaseus T41T (97.5%), Flavihumibacter cheonanensis WS16T (97.4%), and Flavihumibacter stibioxidans YS-17T (97.2%). The cells of strain CHu64-6-1T formed yellow colonies on R2A agar and contained MK-7 as the only menaquinone, phosphatidylethanolamine, an unidentified phospholipid, and two unidentified aminolipids as the major polar lipids, and C15:0 iso, C17:0 iso 3-OH, C15:1 iso G, and C16:1ω5c as the major fatty acids (> 5%). The DNA G + C content of the genome was determined to be 46.5 mol%. The DNA-DNA hybridization values of strain CHu64-6-1T with F. sediminis CJ663T, F. solisilvae 3-3T, F. petaseus T41T, F. cheonanensis WS16T, and F. stibioxidans YS-17T were 12.4–33.2%. Based on the combined genotypic and phenotypic data, we propose that strain CHu64-6-1T represents a novel species of the genus Flavihumibacter, for which the name Flavihumibacter profundi sp. nov. is proposed. The type strain is CHu64-6-1T (= KCTC 62290T = CCTCC AB 2018060T).  相似文献   

5.
A Gram-negative, non-motile, aerobic, catalase-, and oxidasepositive bacterial strain, designated DCY117T, was isolated from ginseng cultivated soil in Gochang-gun, Republic of Korea, and was characterized taxonomically using a multifaceted approach. 16S rRNA gene sequence analysis revealed that strain DCY117T showed highest similarity to Lysobacter ruishenii CTN-1T (95.3%). Phylogenetic analysis revealed that closely related relatives of strain DCY117T were L. aestuarii S2-CT (95.1%), L. daejeonensis GH1-9T (95.0%), and L. caeni BUT-8T (94.9%). Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) were the major polar lipids of strain DCY117T. The major isoprenoid quinone was Q-8. The major cellular fatty acids of strain DCY117T were iso-C15:0, iso-C16:0, and summed feature 9 (comprising iso-C17:1ω9c and/or 10-methyl-C16:0). Genomic DNA G + C content was 61.8 mol%. On the basis of our findings, strain DCY117T is a novel species in the genus Lysobacter. We propose the name Lysobacter panacihumi sp. nov., and the type strain is DCY117T (= KCTC 62019T = JCM 32168T).  相似文献   

6.
A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T?=?JCM 32194T).  相似文献   

7.
A Gram stain-negative, yellowish green-pigmented, facultatively anaerobic, motile, curved rod-shaped bacterium designated as strain JJ016T was isolated from an artificial lake in South Korea, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain JJ016T indicated that the isolate belonged to the family Rhodocyclaceae and exhibited 95.0% identity to Uliginosibacterium gangwonense 5YN10-9T. The major cellular fatty acids of the novel strain were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0, C14:0, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G+C content of strain JJ016T was 61.9 mol%. The major respiratory quinone and major polar lipid of strain JJ016T were ubiquinone-8 and phosphatidylethanolamine, respectively. Based on the morphological and physiological properties and the biochemical evidence presented, we concluded that strain JJ016T represents a novel species of a new genus in the family Rhodocyclaceae, for which the name Viridibacterium curvum gen. nov., sp. nov. is proposed. The type strain is JJ016T (=KACC 16899T =JCM 18715T).  相似文献   

8.
A novel strain K-4-16T was isolated from forest soil of Namsan Mountain, Seoul, South Korea, and was taxonomically characterized by a polyphasic approach. Strain K-4-16T was observed to be a Gram-staining negative, grayish white-coloured, motile with peritrichous flagella, and rod shaped bacterium. It was able to grow at 15–45 °C, at pH 4.5–10.5, and at 0–4% (w/v) NaCl concentration. Based on the 16S rRNA gene sequence analysis, strain K-4-16T belongs to the genus Acidovorax and is closely related to Acidovorax anthurii CFBP 3232T (98.3% sequence identity), Acidovorax konjaci K2T (97.9% sequence identity), Acidovorax valerianellae CFBP 4730T (97.8% sequence identity), and Acidovorax caeni R-24608T (97.8% sequence identity). The only respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The predominant fatty acids of strain K-4-16T were summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genomic DNA G+C content of this novel strain was 64.7 mol%. The DNA–DNA relatedness between strain K-4-16T and its reference strains were below the threshold value of 70%. The morphological, physiological, chemotaxonomic, and phylogenetic analyses clearly distinguished this strain from its close phylogenetic neighbors. Thus, strain K-4-16T represents a novel species of the genus Acidovorax, for which the name Acidovorax monticola sp. nov. is proposed. The type strain is K-4-16T (=?KEMB 9005-570T?=?KACC 19171T?=?NBRC 113141T).  相似文献   

9.
A Gram-staining-negative, non-motile, curved rod-shaped, aerobic bacterium, designated S1-2-4T, was isolated from soil in Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-4T was a member of the family Cytophagaceae and most closely related to ‘Spirosoma radiotolerans’ DG5A (97.2%), Spirosoma fluviale MSd3T (96.4%), and Spirosoma linguale DSM 74T (96.3%). The genomic DNA G + C content of strain S1-2-4T was 49.7 mol%. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), C16:1ω5c, and C16:0, and the major polar lipid was phosphatidylethanolamine. MK-7 was the predominant respiratory quinone. Phenotypic and chemotaxonomic data supported the affiliation of strain S1-2-4T with the genus Spirosoma. DNA-DNA hybridization between strain S1-2-4T and ‘Spirosoma radiotolerans’ showed relatively low DNA-DNA relatedness (31%). Strain S1-2-4T could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, strain S1-2-4T represents a novel member of the genus Spirosoma, for which the name Spirosoma lituiforme sp. nov. is proposed. The type strain is S1-2-4T (= KCTC 52724T = JCM 32128T).  相似文献   

10.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterial strain, designated 16F3Y-2T, was isolated from the Han River, South Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 16F3Y-2T belonged to the family Cytophagaceae in the phylum Bacteroidetes and was most closely related to ‘Hymenobacter terrae’ DG7A (98.01%), H. soli PB17T (97.26%), H. glaciei VUG-A130T (96.78%), H. antarcticus VUG-A42aaT (96.72%), H. ruber PB156T (96.61%), and H. saemangeumensis GSR0100T (95.77%). The G+C content of the genomic DNA of strain 16F3Y-2T was 62.9 mol%. The isolate contained MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1 ω7c/C16:1 ω6c; 35.5%), C15:0 iso (16.9%), C16:1 ω5c (10.9%), and C15:0 anteiso (9.9%) as major fatty acids. The major polar lipid was phosphatidylethanolamine. Phenotypic and chemotaxonomic data supported the affiliation of strain 16F3Y-2T with the genus Hymenobacter. However, strain 16F3Y-2T exhibited relatively low levels of DNA-DNA relatedness with ‘H. terrae’ KCTC 32554 (44.1%) and H. soli KCTC 12607T (24.3%), clearly indicating that the isolate constitutes a new genospecies. Strain 16F3Y-2T could be differentiated from its phylogenetic neighbors on the basis of several phenotypic, genotypic, and chemotaxonomic features. Therefore, strain 16F3Y-2T represents a novel species in the genus Hymenobacter, for which the name Hymenobacter daeguensis sp. nov. is proposed. The type strain is 16F3Y-2T (=KCTC 52537T =JCM 31654T).  相似文献   

11.
A novel pale pink-coloured, strictly aerobic, Gram-stain negative bacterial strain, designated strain KER25-12T, was isolated from a laboratory air-conditioning system in South Korea. Cells were observed to be non-motile cocci showing positive catalase and oxidase reactions. Strain KER25-12T was found to grow at 10–30 °C (optimum, 25–30 °C), at pH 4.0–9.0 (optimum, pH 6.0–7.0) and in the presence of 0–2% (w/v) NaCl (optimum, 0%). Ubiquinone-10 and spermidine were detected as the sole respiratory quinone and the predominant polyamine, respectively. The major fatty acids were identified as summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c), summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), C16:0 and C18:0. The genomic DNA G+C content of strain KER25-12T was determined to be 70.0 mol%. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unidentified aminolipid. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain KER25-12T belongs to the genus Roseomonas and shows high sequence similarity to Roseomonas aerilata 5420S-30T (98.57%), Roseomonas pecuniae N75T (97.44%) and Roseomonas vinacea CPCC 100056T (97.40%). Based on the morphological, physiological, chemotaxonomic and phylogenetic features, strain KER25-12T is concluded to represent a novel species of the genus Roseomonas, for which the name Roseomonas aeriglobus sp. nov. is proposed. The type strain is KER25-12T (= KACC 19282T = JCM 32049T).  相似文献   

12.
A novel Gram-negative and rod-shaped bacterial strain, designated as 16F6ET, was isolated from a water sample. Cells were yellowish in color and catalase- and oxidase-positive. The strain grew at 10–37°C (optimum at 25°C) but not at 4 and 42°C, and pH 5–7 (optimum at pH 7). It showed moderate resistance to gamma-ray irradiation. Comparative phylogenetic analysis showed that strain 16F6ET belonged to the family Cytophagaceae of the class Cytophagia. Furthermore, this isolate showed relatively low 16S rRNA gene sequence similarities (90.7–93.1%) to the members of the genus Spirosoma. The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, C16:0 N alcohol, and C16:0. The polar lipid profile indicated presence of phosphatidylethanolamine, unknown aminophospholipids, an unknown amino lipid, unknown phospholipids, and unknown polar lipids. The predominant isoprenoid quinone was MK-7. The genomic DNA G+C content of strain 16F6ET was 56.5 mol%. Phenotypic, phylogenetic, and chemotaxonomic properties indicated that isolate 16F6ET represents a novel species within the genus Spirosoma, for which the name Spirosoma luteolum sp. nov. is proposed. The type strain is 16F6ET (=KCTC 52199T =JCM 31411T).  相似文献   

13.
White and pale yellow coloured bacteria were isolated from the riverside soil, Daejeon, South Korea, and were designated UCM-11T, UCM-F25, and UCM-80T. We found that all strains were able to reduce nitrate, and the cells were aerobic and motile. The DNA G+C contents of UCM-11T, UCM-F25, and UCM-80T were between 68.9 to 71.2 mol% and the main ubiquinone was observed as Q-8. Based on16S rRNA gene sequences, strains UCM-11T and UCM-F25 were found to closely match with Azohydromonas australica IAM 12664T (98.48–98.55%), and the strain UCM-80T was the closest match with Azohydromonas lata IAM 12599T (98.34%). The presence of summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as well as twokinds of hydroxyfatty acids consisting of C10:0 3-OH and C12:0 2-OH, and branched fatty acids containing C16:0 iso and C17:0 cyclo were detected in all the strains. Phosphatidylethanolamine was a major polar lipid. DNA–DNA relatedness confirmed UCM-11T, UCM-F25 and UCM-80T as novel members of the genus Azohydromonas. Based on the morphological, physiological, biochemical and genotypic characteristics, we suggest that strains UCM-11T, UCM-F25, and UCM-80T represent novel species within the genus Azohydromonas. The names Azohydromonas riparia sp. nov., and Azohydromonas ureilytica sp. nov. are proposed for the type strains UCM-11T (=KACC 18570T =NBRC 111646T) and UCM-80T (=KACC 18576T =NBRC 111658T), respectively.  相似文献   

14.
A pale yellow bacterial strain, designated JJ-A5T, was isolated form an agricultural soil from Jeju Island in Republic of Korea. Cells of the strain were Gram-stain-negative, motile, flagellated and rod-shaped. The strain grew at 15–30°C, pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl. Growth occurred on R2A, but not on Luria-Bertani agar, nutrient agar, trypticase soy agar and MacConkey agar. The strain utilized alachlor as a sole carbon source for growth. The strain JJ-A5T showed 16S rRNA gene sequence similarities lower than 95.4% with members of the family Sphingomonadaceae. Phylogenetic analysis showed that the strain belongs to the family Sphingomonadaceae and strain JJ-A5T was distinctly separated from established genera of this family. The strain contained Q-10 as dominant ubiquinone and spermidine as major polyamine. The predominant cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), 11-methyl C18:1ω7c, C16:0 and C14:0 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, and phosphatidylcholine. The DNA G + C content of the strain was 62.7 mol%. On the basis of the phenotypic, genomic and chemotaxonomic characteristics, strain JJ-A5T is considered to represent a novel genus and species within the family Sphingomonadaceae, for which the name Tardibacter chloracetimidivorans gen. nov., sp. nov. is proposed. The type strain of Tardibacter chloracetimidivorans is JJ-A5T (= KACC 19450T = NBRC 113160T).  相似文献   

15.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

16.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

17.
A Gram-stain-negative, non-motile, non-spore-forming, rodshaped, aerobic bacterial strain, designated S1-2-2-5T, was isolated from the Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-2-5T belonged to the family Cytophagaceae in phylum Bacteroidetes, and was most closely related to Hymenobacter terrae DG7AT (98.2%), Hymenobacter rubidus DG7BT (98.0%), Hymenobacter soli PB17T (97.7%), Hymenobacter daeguensis 16F3Y-2T (97.2%) and Hymenobacter saemangeumensis GSR0100T (97.0%). The G + C content of the genomic DNA of strain S1-2-2-5T was 59.4 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16:1ω7c/C16:1ω6c; 32.0%), C15:0 iso (19.0%), and C15:0 anteiso (15.0%) as the major components, and a polar lipid profile with phosphatidylethanolamine as the major component supported the affiliation of strain S1-2-2-5T to the genus Hymenobacter. The DNA-DNA relatedness between strain S1-2-2-5T and H. terrae KCTC 32554T, H. rubidus KCTC 32553T, H. soli KCTC 12607T, H. daeguensis KCTC 52537T, and H. saemangeumensis KACC 16452T were 49.5, 48.2, 34.1, 28.1, and 31.8% respectively, clearly showing that the isolate is not related to them at the species level. Strain S1-2-2-5T could be clearly differentiated from its closest neighbors on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain S1-2-2-5T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter terrigena sp. nov. is proposed. The type strain is S1-2-2-5T (= KCTC 52737T = JCM 32195T).  相似文献   

18.
A novel, Gram-staining negative, yellow pigmented bacterial strain, designated 15J11-2T, was isolated from soil sample on Jeju Island, Republic of Korea. The strain was subjected to a taxonomic study using a polyphasic approach. The strain was able to grow at temperature range from 10°C to 30°C, pH 7–8, and in presence of 0–1% (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain 15J11-2T belongs to the genus Spirosoma and levels of 16S rRNA gene sequence similarity ranged from 91.5% to 89.8%. The genomic DNA G + C content of strain 15J11-2T was 46.0 mol%. The isolate contained phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, menaquinone MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1ω6c/C16:1ω7c; 39.4%), C16:1ω5c (27.1%), and C16:0 (13.0%) as the major fatty acids, which supported the affiliation of strain 15J11-2T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J11-2T from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, chemotaxonomic features, strain 15J11-2T represents a novel species of the genus Spirosoma, for which the name Spirosoma flavus sp. nov. is proposed. The type strain is 15J11-2T (= KCTC 52026T = JCM 31998T).  相似文献   

19.
A Gram-negative, motile, rod-shaped, aerobic bacterial strain, designated S7-2-11T, was isolated from apple orchard soil from Gyeongsangnam-do Province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain S7-2-11T belongs to the family Cytophagaceae in phylum Bacteroidetes, and is closely related to Spirosoma luteolum 16F6ET (94.2% identity), Spirosoma knui 15J8-12T (92.7%), and Spirosoma linguale DSM 74T (91.0%). The G + C content of the genomic DNA of strain S7-2-11T was 49.8 mol%. Strain S7-2-11T contained summed feature 3 (C16:1 ω7c/C16:1 ω6c; 35.1%), C16:1 ω5c (22.4%), C15:0 iso (13.9%), and C17:0 iso 3-OH (10.6%) as major cellular fatty acids, and MK-7 as the predominant respiratory quinone. The main polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid, and two unidentified polar lipids. Phenotypic and chemotaxonomic data supported the affiliation of strain S7-2-11T with the genus Spirosoma. The results of physiological and biochemical tests showed the genotypic and phenotypic differentiation of the isolate from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S7-2-11T represents a novel species of the genus Spirosoma, for which the name Spirosoma pomorum sp. nov. is proposed. The type strain is S7-2-11T (= KCTC 52726T = JCM 32130T).  相似文献   

20.
A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15–35 °C (optimum, 25–30 °C) and pH 6–11 (optimum, 7.5–8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA–DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G?+?C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (=?CCTCC AB 2016294T?=?KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号