首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterial strain, designated 16F3Y-2T, was isolated from the Han River, South Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 16F3Y-2T belonged to the family Cytophagaceae in the phylum Bacteroidetes and was most closely related to ‘Hymenobacter terrae’ DG7A (98.01%), H. soli PB17T (97.26%), H. glaciei VUG-A130T (96.78%), H. antarcticus VUG-A42aaT (96.72%), H. ruber PB156T (96.61%), and H. saemangeumensis GSR0100T (95.77%). The G+C content of the genomic DNA of strain 16F3Y-2T was 62.9 mol%. The isolate contained MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1 ω7c/C16:1 ω6c; 35.5%), C15:0 iso (16.9%), C16:1 ω5c (10.9%), and C15:0 anteiso (9.9%) as major fatty acids. The major polar lipid was phosphatidylethanolamine. Phenotypic and chemotaxonomic data supported the affiliation of strain 16F3Y-2T with the genus Hymenobacter. However, strain 16F3Y-2T exhibited relatively low levels of DNA-DNA relatedness with ‘H. terrae’ KCTC 32554 (44.1%) and H. soli KCTC 12607T (24.3%), clearly indicating that the isolate constitutes a new genospecies. Strain 16F3Y-2T could be differentiated from its phylogenetic neighbors on the basis of several phenotypic, genotypic, and chemotaxonomic features. Therefore, strain 16F3Y-2T represents a novel species in the genus Hymenobacter, for which the name Hymenobacter daeguensis sp. nov. is proposed. The type strain is 16F3Y-2T (=KCTC 52537T =JCM 31654T).  相似文献   

2.
A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T?=?JCM 32194T).  相似文献   

3.
A novel Gram-negative and red-pinkish bacterium designated DG5BT was isolated from a dry soil. Cells were rods that were catalase- and oxidase-positive, and non-motile. The strain was found to grow at temperatures from 10 to 30°C (optimum 25°C) and pH 6.0–8.0, (optimum pH 7) on R2A broth. 16S rRNA gene sequence (1,452 bp) analysis of this strain identified it as a member of the genus Hymenobacter that belongs to the class Cytophagia. The highest gene sequence similarities were with Hymenobacter arizonensis OR362-8T (98.3%), Hymenobacter humi DG31AT (97.6%), and Hymenobacter glaciei VUG-A130T (96.6%). Strain DG5BT exhibited <70% DNA-DNA relatedness with H. arizonensis (34.7 ± 7.0%; reciprocally, 29.7 ± 1.2%) and H. humi (39.4 ± 4.3%; reciprocally, 39.5 ± 3.3%) as a different genomic species, and its genomic DNA G+C content was 59.8%. Strain DG5BT had the following chemotaxonomic characteristics: the major fatty acids are iso-C15:0, anteiso-C15:0, C16:1ω5c, and summed feature 3 (C16:1ω7c / C16:1ω6c); polar lipid profile contained phosphatidylethanolamine (PE), unknown aminophospholipid (APL), unknown glycolipids (GL), unknown phospholipids (PL), and unknown polar lipids (L); the major quinone is MK-7. The absorbance peak of pigment is at 481.0 nm. Strain DG5BT showed low-level resistance to gamma-ray irradiation. Phenotypic, chemotaxonomic, and genotypic properties indicated that isolate DG5BT represents a novel species within the genus Hymenobacter for which the name Hymenobacter sedentarius sp. nov. is proposed. The type strain is DG5BT (=KCTC 32524T =JCM 19636T).  相似文献   

4.
A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterial strain, designated 1-3-3-8T, was isolated from soil and characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 1-3-3-8T belongs to the family Cytophagaceae of phylum Bacteroidetes and is most closely related to Hymenobacter paludis KBP-30T (96.8% similarity), Hymenobacter ocellatus Myx2105T (96.8%), Hymenobacter coalescens WW84T (95.6%), and Hymenobacter deserti ZLB-3T (95.4%). The G + C content of the genomic DNA of strain 1-3-3-8T was 63.6 mol%. The isolate contained C15:0 iso (28.4%), summed feature 4 (C17:1 anteiso B/C17:1 iso I; 18.9%), and C15:0 anteiso (17.6%) as major fatty acids, MK-7 as the predominant respiratory quinone, and sym-homospermidine as the predominant polyamine. The major polar lipids were phosphatidylethanolamine and an unidentified lipid. The phenotypic and chemotaxonomic data supported the affiliation of strain 1-3-3-8T with the genus Hymenobacter. The DNA-DNA relatedness between strain 1-3-3-8T and H. paludis KCTC 32237T and H. ocellatus DSM 11117T were 24.5 and 27.4% respectively, clearly showing that the isolate is not related to them at the species level. Overall, the novel strain could be differentiated from its phylogenetic neighbors on the basis of several phenotypic, genotypic, and chemotaxonomic features. Therefore, strain 1-3-3-8T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter jeollabukensis sp. nov. has been proposed. The type strain is 1-3-3-8T (= KCTC 52741T = JCM 32192T).  相似文献   

5.
A Gram-stain-negative, non-motile, non-spore-forming, rodshaped, aerobic bacterial strain, designated S1-2-2-5T, was isolated from the Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-2-5T belonged to the family Cytophagaceae in phylum Bacteroidetes, and was most closely related to Hymenobacter terrae DG7AT (98.2%), Hymenobacter rubidus DG7BT (98.0%), Hymenobacter soli PB17T (97.7%), Hymenobacter daeguensis 16F3Y-2T (97.2%) and Hymenobacter saemangeumensis GSR0100T (97.0%). The G + C content of the genomic DNA of strain S1-2-2-5T was 59.4 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16:1ω7c/C16:1ω6c; 32.0%), C15:0 iso (19.0%), and C15:0 anteiso (15.0%) as the major components, and a polar lipid profile with phosphatidylethanolamine as the major component supported the affiliation of strain S1-2-2-5T to the genus Hymenobacter. The DNA-DNA relatedness between strain S1-2-2-5T and H. terrae KCTC 32554T, H. rubidus KCTC 32553T, H. soli KCTC 12607T, H. daeguensis KCTC 52537T, and H. saemangeumensis KACC 16452T were 49.5, 48.2, 34.1, 28.1, and 31.8% respectively, clearly showing that the isolate is not related to them at the species level. Strain S1-2-2-5T could be clearly differentiated from its closest neighbors on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain S1-2-2-5T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter terrigena sp. nov. is proposed. The type strain is S1-2-2-5T (= KCTC 52737T = JCM 32195T).  相似文献   

6.
Three novel bacterial strains (UCM-2T, UCM-G28T, and UCM-G35T) were obtained while isolating soil bacteria for the development of antibiotics. Cells of these strains were Gram-negative, non-spore forming, motile by means of a single flagellum, and rod shaped. In all strains, the predominant isoprenoid quinone was ubiquinone-8 (Q-8). Cells contained C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c), and C17:0 cyclo as the major fatty acids, and C10:0 3-OH as the major hydroxy fatty acid. The polar lipid profiles of the three novel strains were dominated by diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C contents of strains UCM-2T, UCM-G28T, and UCMG35T were 67.5, 65.9, and 66.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA sequences showed that strain UCM-2T was most closely related to Variovorax soli NBRC 106424T, whereas strains UCM-G28T and UCM-G35T were most similar to Variovorax ginsengisoli Gsoil 3165T. Values indicating DNA-DNA hybridization between the novel isolates and closely related species in the genus Variovorax were lower than the 70% cut-off point. These phenotypic, chemotaxonomic, and phylogenetic data indicate that the three isolates should be classified as new members of the genus Variovorax, for which the names Variovorax ureilyticus sp. nov., Variovorax rhizosphaerae sp. nov., and Variovorax robiniae sp. nov. are proposed. The type strains are UCM-2T (= KACC 18899T = NBRC 112306T), UCMG28T (= KACC 18900T = NBRC 112307T), and UCM-G35T (= KACC 18901T = NBRC 112308T), respectively.  相似文献   

7.
White and pale yellow coloured bacteria were isolated from the riverside soil, Daejeon, South Korea, and were designated UCM-11T, UCM-F25, and UCM-80T. We found that all strains were able to reduce nitrate, and the cells were aerobic and motile. The DNA G+C contents of UCM-11T, UCM-F25, and UCM-80T were between 68.9 to 71.2 mol% and the main ubiquinone was observed as Q-8. Based on16S rRNA gene sequences, strains UCM-11T and UCM-F25 were found to closely match with Azohydromonas australica IAM 12664T (98.48–98.55%), and the strain UCM-80T was the closest match with Azohydromonas lata IAM 12599T (98.34%). The presence of summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as well as twokinds of hydroxyfatty acids consisting of C10:0 3-OH and C12:0 2-OH, and branched fatty acids containing C16:0 iso and C17:0 cyclo were detected in all the strains. Phosphatidylethanolamine was a major polar lipid. DNA–DNA relatedness confirmed UCM-11T, UCM-F25 and UCM-80T as novel members of the genus Azohydromonas. Based on the morphological, physiological, biochemical and genotypic characteristics, we suggest that strains UCM-11T, UCM-F25, and UCM-80T represent novel species within the genus Azohydromonas. The names Azohydromonas riparia sp. nov., and Azohydromonas ureilytica sp. nov. are proposed for the type strains UCM-11T (=KACC 18570T =NBRC 111646T) and UCM-80T (=KACC 18576T =NBRC 111658T), respectively.  相似文献   

8.
A Gram-negative, motile, aerobic and rod-shaped bacterial strain designated 119BY6-57T was isolated from spongin. The taxonomic position of the novel isolate was confirmed using the polyphasic approach. Strain 119BY6-57T grew well at 25–30°C on marine agar. On the basis of 16S rRNA gene sequence similarity, strain 119BY6-57T belongs to the family Xanthomonadaceae and is related to Lysobacter aestuarii S2-CT (99.8% sequence similarity), L. maris KMU-14T (97.5%), and L. daejeonensis GH1-9T (97.3%). Lower sequence similarities (97.0%) were found with all of the other recognized members of the genus Lysobacter. The G + C content of the genomic DNA was 69.9 mol%. The major respiratory quinone was Q-8 and the major fatty acids were C16:0 iso, C15:0 iso, summed feature 9 (comprising C17:1 iso ω9c and/or C16:0 10-methyl), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), and C11:0 iso 3-OH. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified phospholipids, and an unidentified polar lipid. DNADNA relatedness values between strain 119BY6-57T and its closest phylogenetically neighbors were below 48.0 ± 2.1%. Based on genotypic and phenotypic characteristics, it is concluded that strain 119BY6-57T is a new member within the genus Lysobacter, for which the name Lysobacter spongiae sp. nov. is proposed. The type strain is 119BY6-57T (= KACC 19276T = LMG 30077T).  相似文献   

9.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

10.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

11.
A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated T5T, was isolated from the Chishui River in Maotai town, Guizhou Province, Southwest of China. Strain T5T was found to grow optimally at pH 9.0 and 25 °C. The 16S rRNA gene sequence analysis indicated that strain T5T belongs to the family Sphingomonadaceae within the phylum Proteobacteria; the strain T5T clustered with the type strains of Sphingopyxis contaminans, Sphingorhabdus wooponensis and Sphingorhabdus rigui, with which it exhibits 16S rRNA gene sequence similarity values of 96.2–96.9%. The DNA G+C content was 58.5 mol%. The major respiratory quinone was Q-10 and the major polar lipid was phosphatidylethanolamine. The major polyamine was homospermidine and the major fatty acids were C18:1 ω7c (37.5%) and C16:1 ω7c (30.1%). On the basis of phylogenetic, phenotypic and genetic data, strain T5T represents a novel species of the genus Sphingorhabdus, for which the name Sphingorhabdus buctiana sp. nov. is proposed. The type strain is T5T (= CGMCC 1.12929T = JCM 30114T). It is also proposed that Sphingopyxis contaminans should be reclassified as a member of the genus Sphingorhabdus.  相似文献   

12.
A single strain, designated BF49T, was isolated from a biofilm of a tufa deposit from the Westerhöfer rivulet, Lower Saxony, Germany. The G+C content of the genomic DNA of strain BF49T was 69 mol% and the predominant ubiquinone was Q-8. Major fatty acids were C16:1ω7c/15 iso 2OH and C16:0. Comparative 16S rRNA gene sequence analysis indicated that the isolate was placed within the genus Methylibium, class Betaproteobacteria, distantly related to the type strain Methylibium petroleiphilum LMG 22953T (97.4% similarity), Methylibium fulvum Gsoil 322T (96%), and Methylibium aquaticum IMCC1728T (95.7%). On the basis of phylogenetic and phenotypic distinctness we propose a novel species, Methylibium subsaxonicum sp. nov., with strain BF49T (DSM 19570T, CIP 109700T) as the type strain.  相似文献   

13.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

14.
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.  相似文献   

15.
A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15–35 °C (optimum, 25–30 °C) and pH 6–11 (optimum, 7.5–8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA–DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G?+?C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (=?CCTCC AB 2016294T?=?KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.  相似文献   

16.
A novel strain K-4-16T was isolated from forest soil of Namsan Mountain, Seoul, South Korea, and was taxonomically characterized by a polyphasic approach. Strain K-4-16T was observed to be a Gram-staining negative, grayish white-coloured, motile with peritrichous flagella, and rod shaped bacterium. It was able to grow at 15–45 °C, at pH 4.5–10.5, and at 0–4% (w/v) NaCl concentration. Based on the 16S rRNA gene sequence analysis, strain K-4-16T belongs to the genus Acidovorax and is closely related to Acidovorax anthurii CFBP 3232T (98.3% sequence identity), Acidovorax konjaci K2T (97.9% sequence identity), Acidovorax valerianellae CFBP 4730T (97.8% sequence identity), and Acidovorax caeni R-24608T (97.8% sequence identity). The only respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The predominant fatty acids of strain K-4-16T were summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genomic DNA G+C content of this novel strain was 64.7 mol%. The DNA–DNA relatedness between strain K-4-16T and its reference strains were below the threshold value of 70%. The morphological, physiological, chemotaxonomic, and phylogenetic analyses clearly distinguished this strain from its close phylogenetic neighbors. Thus, strain K-4-16T represents a novel species of the genus Acidovorax, for which the name Acidovorax monticola sp. nov. is proposed. The type strain is K-4-16T (=?KEMB 9005-570T?=?KACC 19171T?=?NBRC 113141T).  相似文献   

17.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

18.
The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).  相似文献   

19.
A novel Gram-negative and rod-shaped bacterial strain, designated as 16F6ET, was isolated from a water sample. Cells were yellowish in color and catalase- and oxidase-positive. The strain grew at 10–37°C (optimum at 25°C) but not at 4 and 42°C, and pH 5–7 (optimum at pH 7). It showed moderate resistance to gamma-ray irradiation. Comparative phylogenetic analysis showed that strain 16F6ET belonged to the family Cytophagaceae of the class Cytophagia. Furthermore, this isolate showed relatively low 16S rRNA gene sequence similarities (90.7–93.1%) to the members of the genus Spirosoma. The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, C16:0 N alcohol, and C16:0. The polar lipid profile indicated presence of phosphatidylethanolamine, unknown aminophospholipids, an unknown amino lipid, unknown phospholipids, and unknown polar lipids. The predominant isoprenoid quinone was MK-7. The genomic DNA G+C content of strain 16F6ET was 56.5 mol%. Phenotypic, phylogenetic, and chemotaxonomic properties indicated that isolate 16F6ET represents a novel species within the genus Spirosoma, for which the name Spirosoma luteolum sp. nov. is proposed. The type strain is 16F6ET (=KCTC 52199T =JCM 31411T).  相似文献   

20.
A novel strain, DCY108T was isolated from soil of a Panax ginseng field, Yeoncheon province (38°04′N 126°57′E), Republic of Korea. Strain DCY108T is Gram-negative, non-motile, non-flagellate, rod-shaped, and aerobic. The bacterium grows optimally at 25–30 °C, pH 6.5–7.0 and 1 % NaCl. Phylogenetically, strain DCY108T is closely related to Pedobacter jejuensis JCM 18824T, Pedobacter aquatilis JCM 13454T, Pedobacter kyungheensis LMG 26577T and the type strain of the genus Pedobacter heparinus DSM 2366T. The DNA–DNA relatedness values between strain DCY108T and its close phylogenetic neighbors were below 30.0 %. The DNA G+C content of strain DCY108T was determined to be 45.1 mol%. The predominant quinone was menaquinone 7 (MK-7). The major polar lipids were identified as phosphatidylethanolamine and three unidentified aminolipids AL1, AL13 and AL17. Iso-C15:00, iso-C17:03OH and summed feature 3 (C16:1 ω7c/C16:1 ω6c) were identified as the major fatty acids present in strain DCY108T. The results of physiological and biochemical tests allowed strain DCY108T to be differentiated phenotypically from other recognized species belonging to the genus Pedobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Pedobacter panacis sp. nov is proposed with the type strain designated as DCY108T (=CCTCCAB 2015196T = KCTC 42748T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号