首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Neurofibrillary tangles (NFT) accumulated in Alzheimer's diseases and related disorders contain hyperphosphorylated tau and display immunoreactivity for active forms of various kinases. To understand the role of p38MAPK (mitogen-activated protein kinase) in NFT formation, we have studied a transgenic (Tg) mouse model of tauopathy, JNPL3, that expresses P301L mutant tau, and bigenic mice, TAPP, generated by cross-breeding of JNPL3 with Tg2576 mice. Age-matched non-Tg mice (NTg), wild-type human tau Tg mice (JN25), and Tg2576 mice were used as controls. Phosphorylated p38MAPK (active form) immunoreactivity was consistently located in NFT and granulovaculolar degeneration in JNPL3 and TAPP mice older than 5 months of age. Unphosphorylated/total-p38MAPK was not detectable in spinal cord and brain sections from 2- to 11-month-old mice, even though JNPL3 mice, but not controls had an age-dependent increase of total-p38MAPK by western blotting. Spinal cord/brain extracts from mice and human with tauopathy were demonstrated to have insignificant amount of active-p38MAPK. However, they contained antiactive-p38MAPK cross-reactive proteins insoluble in sarkosyl and similar to phosphorylated tau in size. Consistently, antiactive-p38MAPK immunoprecipitates displayed tau immunoreactivity, but not total-p38MAPK, and antitau immunoprecipitates displayed active-p38MAPK immunoreactivity. Together, the results indicate that the cross-reactivity of antiactive-p38MAPK antibody with phosphorylated tau is responsible for the immunolabeling of tau-positive inclusion.  相似文献   

2.
Microtubule associated protein tau, which is expressed in six alternatively spliced molecular isoforms in human brain, is abnormally hyperphosphorylated in Alzheimer disease and related tauopathies. Here, we show (i) that GSK-3alpha and neither GSK-3beta nor cdk5 can phosphorylate tau at Ser262 and phosphorylation at Ser235 by cdk5 primes phosphorylation at Thr231 by GSK-3alpha/beta; (ii) that tau isoforms with two N-terminal inserts (tau4L, tau3L) are phosphorylated by cdk5 plus GSK-3 at Thr231 markedly more than isoforms lacking these inserts (tau4, tau3); and (iii) that Thr231 is phosphorylated approximately 50% more in free tau than in microtubule-bound tau, and the phosphorylation at this site results in the dissociation of tau from microtubules. These findings suggest that the phosphorylation of tau at Thr231 and Ser262 by cdk5 plus GSK-3, which inhibits its normal biological activity, is regulated both by its amino terminal inserts and its physical state.  相似文献   

3.
tau蛋白是神经细胞中主要的微管相关蛋白, 它的异常过度磷酸化被认为是阿尔茨海默病 (AD) 致病过程中的关键因素. 由于法律、社会、家庭等诸多因素使得获取的人脑组织标本常常在死亡后2~3 h以上,因此了解死亡不同时间后tau蛋白磷酸化的改变,对研究tau蛋白的功能及在AD致病过程中作用显得十分重要. 用位点特异的、磷酸化依赖的抗tau蛋白抗体检测正常大鼠脑中tau蛋白磷酸化程度及死亡后其磷酸化的变化情况,再用非同位素的点印迹技术测定鼠脑中tau蛋白激酶、磷酸酶在不同温度下的活性. 结果发现,正常鼠脑中tau蛋白除了Ser262,Ser409,Ser422外,在Thr181,Ser199,Ser202,Thr205,Thr212,Ser214,Thr217,Ser396和Ser404存在不同程度的磷酸化,并且在死亡后3 h,出现tau的多位点的去磷酸化及tau蛋白迁移加快,6 h后更为明显,但tau蛋白水平即使在大鼠死亡后6 h,仍未见有明显的改变. 用点印迹测定蛋白激酶和磷酸酶活性结果显示,tau蛋白激酶、磷酸酶活性均有温度依赖性降低,在25℃时激酶活性降低远大于磷酸酶活性的降低,tau蛋白在死亡后的快速去磷酸化与相对高的磷酸酶作用有关.  相似文献   

4.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

5.
Tau protein, a neuronal microtubule-associated protein, is phosphorylated in situ and hyperphosphorylated when aggregated into the paired helical filaments of Alzheimer's disease. To study the phosphorylation of tau protein in vivo, we have stably transfected htau40, the largest human tau isoform, into Chinese hamster ovary cells. The distribution and phosphorylation of tau was monitored by gel shift, autoradiography, immunofluorescence, and immunoblotting, using the antibodies Tau-1, AT8, AT180, and PHF-1, which are sensitive to the phosphorylation of Ser202, Thr205, Thr231, Ser235, Ser396, and Ser404 and are used in the diagnosis of Alzheimer tau. In interphase cells, tau becomes phosphorylated to some extent, partly at these sites; most of the tau is associated with microtubules. In mitosis, the above Ser/Thr-Pro sites become almost completely phosphorylated, causing a pronounced shift in M(r) and an antibody reactivity similar to that of Alzheimer tau. Moreover, a substantial fraction of tau is found in the cytoplasm detached from microtubules. Autoradiographs of metabolically labeled Chinese hamster ovary cells in interphase and mitosis confirmed that tau protein is more highly phosphorylated during mitosis. The understanding of tau phosphorylation under physiological conditions might help elucidate possible mechanisms for the hyperphosphorylation in Alzheimer's disease.  相似文献   

6.
Stress-induced hyperphosphorylation of tau in the mouse brain   总被引:6,自引:0,他引:6  
Okawa Y  Ishiguro K  Fujita SC 《FEBS letters》2003,535(1-3):183-189
We previously showed that starvation causes reversible hyperphosphorylation of tau in the mouse brain. To explore possible involvement of stress in tau hyperphosphorylation quantitative analysis of phosphorylated tau in four brain regions of mice subjected to cold water stress (CWS) was made by immunoblot analyses using phosphorylation-dependent antibodies directed to eight sites on tau known to be hyperphosphorylated in the brain of Alzheimer's disease (AD) patients. Ser199, Ser202/Thr205, Thr231/Ser235 were hyperphosphorylated 20 and 40 min after CWS. The response was pronounced in the hippocampus and cerebral hemisphere, but weak in the cerebellum in parallel with the regional vulnerability in AD. Among the regulatory phosphorylation of protein kinases studied, a transient phosphorylation of tau protein kinase I/glycogen synthase kinase 3beta at Ser9 was most conspicuous.  相似文献   

7.
Hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies, and tau protein kinase II is reported to play a role in the pathogenesis of Alzheimer's disease. Recently, we reported that tau protein kinase II (cdk5/p20)-phosphorylated human tau inhibits microtubule assembly, and tau protein kinase II (cdk5/p20) phosphorylation of microtubule-associated tau results in dissociation of phosphorylated tau from the microtubules and tubulin depolymerization. In the studies reported here, a combination of mass spectrometric techniques was used to study the phosphorylation of human recombinant tau by recombinant tau protein kinase II (cdk5/p20) in vitro. The extent of phosphorylation was determined by measuring the molecular mass of phosphorylated tau using mass spectrometry. Reaction of human recombinant tau with tau protein kinase II (cdk5/p20) resulted in the formation of two major species containing either five or six phosphate groups. The specific amino acid residues phosphorylated were determined by analyzing tryptic peptides by tandem mass spectrometry via either MALDI/TOF post-source decay or by electrospray tandem mass spectrometry. Based on these experiments, we conclude that tau protein kinase II (cdk5/p20) can phosphorylate human tau at Thr(181), Thr(205), Thr(212), Thr(217), Ser(396) and Ser(404).  相似文献   

8.
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.  相似文献   

9.
Ikeda Y  Ishiguro K  Fujita SC 《FEBS letters》2007,581(5):891-897
Tau is reversibly hyperphosphorylated in the mouse brain by starvation or cold water swimming. Here, we report tau phosphorylation in the hippocampus of normal mouse after ether anesthesia, known to trigger typical stress reactions. Robust phosphorylation of tau was observed immediately and 10min after ether vapor exposure at Ser202/Thr205 and Thr231/Ser235, sites typically phosphorylated in Alzheimer brains. The phosphorylation levels returned to baseline by 1h. The most conspicuous and consistent change in the protein kinases studied was the inactivating phosphorylation of Ser9 of TPKI/GSK3beta in close correspondence with tau phosphorylation. These findings show that tau phosphorylation is a rapid physiological process integral to stress response system, and suggest involvement therein of TPKI/GSK3beta.  相似文献   

10.
Tau hyperphosphorylation precedes neuritic lesion formation in Alzheimer's disease, suggesting it participates in the tau fibrillization reaction pathway. Candidate tau protein kinases include members of the casein kinase 1 (CK1) family of phosphotransferases, which are highly overexpressed in Alzheimer's disease brain and colocalize with neuritic and granulovacuolar lesions. Here we characterized the contribution of one CK1 isoform, Ckidelta, to the phosphorylation of tau at residues Ser202/Thr205 and Ser396/Ser404 in human embryonic kidney 293 cells using immunodetection and fluorescence microscopy. Treatment of cells with membrane permeable CK1 inhibitor 3-[(2,3,6-trimethoxyphenyl)methylidenyl]-indolin-2-one (IC261) lowered occupancy of Ser396/Ser404 phosphorylation sites by >70% at saturation, suggesting that endogenous CK1 was the major source of basal phosphorylation activity at these sites. Overexpression of Ckidelta increased CK1 enzyme activity and further raised tau phosphorylation at residues Ser202/Thr205 and Ser396/Ser404 in situ. Inhibitor IC261 reversed tau hyperphosphorylation induced by Ckidelta overexpression. Co-immunoprecipitation assays showed direct association of tau and Ckidelta in situ, consistent with tau being a Ckidelta substrate. Ckidelta overexpression also produced a decrease in the fraction of bulk tau bound to detergent-insoluble microtubules. These results suggest that Ckidelta phosphorylates tau at sites that modulate tau/microtubule binding, and that the expression pattern of Ckidelta in Alzheimer's disease is consistent with it playing an important role in tau aggregation.  相似文献   

11.
Abnormal phosphorylation of microtubule-associated protein tau plays a critical role in Alzheimer's disease (AD), together with a distinct decrease of energy metabolism in the affected brain regions. To explore the effect of acute energy crisis on tau phosphorylation and the underlying mechanisms, we incubated rat brain slices in artificial cerebrospinal fluid (aCSF) at 37 degrees C with or without an oxygen supply, or in aCSF with low glucose concentrations. Then, the levels of total, phosphorylated and unphosphorylated tau, as well as the activities and levels of protein phosphatase (PP)-1, PP-2A, glycogen synthase kinase 3 (GSK-3), extracellular signal-regulated protein kinase (ERK) and C-jun amino terminal kinase (JNK), were measured. It was found, unexpectedly, that tau was significantly dephosphorylated at Ser396/Ser404 (PHF-1), Ser422 (R145), Ser199/Ser202 (Tau-1), Thr181 (AT270), Ser202/Thr205 (AT8) and Thr231 (AT180) by acute anoxia for 30 min or 120 min. The activity of PP-2A and the level of dephosphorylated PP-2A catalytic subunit at tyrosine 307 (Tyr307) were simultaneously increased. The active forms of ERK1/2 and JNK1/2 were decreased under anoxic incubation. The PP-2A inhibitor, okadaic acid (OA, 0.75 microm), completely prevented tau from acute anoxia-induced dephosphorylation and restored the active forms of ERK1/2 and JNK1/2 to the control level. The activities and protein levels of GSK-3 and PP-1 showed no change during acute anoxia. These data suggest that acute anoxia induces tau dephosphorylation, and that PP-2A may play a key role in tau dephosphorylation induced by acute anoxia.  相似文献   

12.
Microtubule-associated protein tau contains a consensus motif for protein kinase B/Akt (Akt), which plays an essential role in anti-apoptotic signaling. The motif encompasses the AT100 double phospho-epitope (Thr212/Ser214), a specific marker for Alzheimer's disease (AD) and other neurodegenerations, raising the possibility that it could be generated by Akt. We studied Akt-dependent phosphorylation of tau protein in vitro. We found that Akt phosphorylated both Thr212 and Ser214 in the longest and shortest tau isoforms as determined using phospho site-specific antibodies against tau. Akt did not phosphorylate other tau epitopes, including Tau-1, AT8, AT180, 12E8 and PHF-1. The Akt-phosphorylated tau retained its initial electrophoretic mobility. Immunoprecipitation studies with phospho-specific Thr212 and Ser214 antibodies revealed that only one of the two sites is phosphorylated per single tau molecule, resulting in tau immunonegative for AT100. Mixed kinase studies showed that prior Ser214 phosphorylation by Akt blocked protein kinase A but not GSK3beta activity. On the other hand, GSK3beta selectively blocked Ser214 phosphorylation, which was prevented by lithium. The results suggest that Akt may be involved in AD-specific phosphorylation of tau at the AT100 epitope in conjunction with other kinases. Our data suggest that phosphorylation of tau by Akt may play specific role(s) in Akt-mediated anti-apoptotic signaling, particularly relevant to AD and other neurodegenerations.  相似文献   

13.
The stress-activated kinases c-Jun N-terminal kinase (JNK) and p38 are members of the mitogen-activated protein (MAP) kinase family and take part in signalling cascades initiated by various forms of stress. Their targets include the microtubule-associated protein tau, which becomes hyperphosphorylated in Alzheimer's disease. It is necessary, as a forerunner for in vivo studies, to identify the protein kinases and phosphatases that are responsible for phosphate turnover at individual sites. Using nanoelectrospray mass spectrometry, we have undertaken an extensive comparison of phosphorylation in vitro by several candidate tau kinases, namely, JNK, p38, ERK2, and glycogen synthase kinase 3beta (GSK3beta). Between 10 and 15 sites were identified for each kinase. The three MAP kinases phosphorylated Ser202 and Thr205 but not detectably Ser199, whereas conversely GSK3beta phosphorylated Ser199 but not detectably Ser202 or Thr205. Phosphorylated Ser404 was found with all of these kinases except JNK. The MAP kinases may not be strictly proline specific: p38 phosphorylated the nonproline sites Ser185, Thr245, Ser305, and Ser356, whereas ERK2 was the most strict. All of the sites detected except Thr245 and Ser305 are known or suspected phosphorylation sites in paired helical filament-tau extracted from Alzheimer brains. Thus, the three MAP kinases and GSK3beta are importantly all strong candidates as tau kinases that may be involved in the pathogenic hyperphosphorylation of tau in Alzheimer's disease.  相似文献   

14.
The microtubule-associated protein tau is hyperphosphorylated and forms neurofibrillary tangles in Alzheimer disease. Additionally caspase-cleaved tau is present in Alzheimer disease brains co-localized with fibrillar tau pathologies. To further understand the role of site-specific phosphorylation and caspase cleavage of tau in regulating its function, constructs of full-length tau (T4) or tau truncated at Asp421 (T4C3) to mimic caspase-3 cleavage with and without site-directed mutations that mimic phosphorylation at Thr231/Ser235, Ser396/Ser404, or at all four sites (Thr231/Ser235/Ser396/Ser404) were made and expressed in cells. Pseudophosphorylation of T4, but not T4C3, at either Thr231/Ser235 or Ser396/Ser404 increased its phosphorylation at Ser262 and Ser199. Pseudophosphorylation at Thr231/Ser235 impaired the microtubule binding of both T4 and T4C3. In contrast, pseudophosphorylation at Ser396/Ser404 only affected microtubule binding of T4C3 but did make T4 less soluble and more aggregated, which is consistent with the previous finding (Abraha, A., Ghoshal, N., Gamblin, T. C., Cryns, V., Berry, R. W., Kuret, J., and Binder, L. I. (2000) J. Cell Sci. 113, 3737-3745) that pseudophosphorylation at Ser396/Ser404 enhances tau polymerization in vitro. In situ T4C3 was more prevalent in the cytoskeletal and microtubule-associated fractions compared with T4, whereas purified recombinant T4 bound microtubules with higher affinity than did T4C3 in an in vitro assay. These data indicate the importance of cellular factors in regulating tau-microtubule interactions and that, in the cells, phosphorylation of T4 might impair its microtubule binding ability more than caspase cleavage. Treatment of cells with nocodazole revealed that pseudophosphorylation of T4 at both Thr231/Ser235 and Ser396/Ser404 diminished the ability of tau to protect against microtubule depolymerization, whereas with T4C3 only pseudophosphorylation at Ser396/Ser404 attenuated the ability of tau to stabilize the microtubules. These results show that site-specific phosphorylation and caspase cleavage of tau differentially affect the ability of tau to bind and stabilize microtubules and facilitate tau self-association.  相似文献   

15.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

16.
In mammalian brain, tau, glycogen synthase kinase 3beta (GSK3beta), and 14-3-3, a phosphoserine-binding protein, are parts of a multiprotein tau phosphorylation complex. Within the complex, 14-3-3 simultaneously binds to tau and GSK3beta (Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R., and Paudel, H. K. (2003) J. Biol. Chem. 278, 12722-12728). The molecular mechanism by which 14-3-3 connects GSK3beta to tau within the complex is not clear. In this study, we find that GSK3beta within the tau phosphorylation complex is phosphorylated on Ser(9). From extracts of rat brain and rat primary cultured neurons, Ser(9)-phosphorylated GSK3beta precipitates with glutathione-agarose beads coated with glutathione S-transferase-14-3-3. Similarly, from rat brain extract, Ser(9)-phosphorylated GSK3beta co-immunoprecipitates with tau. In vitro, 14-3-3 binds to GSK3beta only when the kinase is phosphorylated on Ser(9). In transfected HEK-293 cells, 14-3-3 binds to Ser(9)-phosphorylated GSK3beta and does not bind to GSK3beta (S9A). Tau, on the other hand, binds to both GSK3beta (WT) and GSK3beta (S9A). Moreover, 14-3-3 enhances the binding of tau with Ser(9)-phosphorylated GSK3beta by approximately 3-fold but not with GSK3beta (S9A). Similarly, 14-3-3 stimulates phosphorylation of tau by Ser(9)-phosphorylated GSK3beta but not by GSK3beta (S9A). In transfected HEK-293 cells, Ser(9) phosphorylation suppresses GSK3beta-catalyzed tau phosphorylation in the absence of 14-3-3. In the presence of 14-3-3, however, Ser(9)-phosphorylated GSK3beta remains active and phosphorylates tau. Our data indicate that within the tau phosphorylation complex, 14-3-3 connects Ser(9)-phosphorylated GSK3beta to tau and Ser(9)-phosphorylated GSK3beta phosphorylates tau.  相似文献   

17.
Taga M  Mouton-Liger F  Paquet C  Hugon J 《FEBS letters》2011,585(12):1801-1806
The mammalian target of rapamycin complex 1 (mTORC1) pathway including p70(S6K) (the 70-kDa p70 S6 kinase) and S6, controls protein synthesis, has anti-apoptotic functions and can phosphorylate tau protein. mTORC1 is triggered by nutrients such as phosphatidic acid (PA). Previous experimental studies have shown that oxidative stress may down-regulate this pathway leading to neuronal death. Our results showed that in human neuroblastoma cells, PA exposure can reduce H(2)O(2)-induced apoptosis and can increase tau protein phosphorylation on Ser214 via p70(S6K) activation. These findings reveal that PA, via the mTOR kinase, can trigger tau phosphorylation on a site known to reduce paired helical filament (PHF) formation.  相似文献   

18.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

19.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

20.
Effect of phosphomimicking mutations of 14-3-3ζ on its interaction with phosphorylated shortest isoform of human tau protein and phosphorylated human small heat shock protein HspB6 (Hsp20) was analyzed. Chemical crosslinking and native gel electrophoresis indicate that mutations S184E and T232E weakly affect interaction of 14-3-3 with phosphorylated tau protein, whereas mutations S58E and S58E/S184E/T232E significantly impair interaction of 14-3-3 and tau. Size-exclusion chromatography, chemical crosslinking and immunoprecipitation revealed that phosphomimicking mutations S58E and S58E/S184E/T232E strongly decrease, mutation T232E weakly affects and mutation S184E improves interaction of 14-3-3 with phosphorylated HspB6. Thus, mutation mimicking phosphorylation of Ser58 dramatically decreases interaction of 14-3-3 with two target proteins and this effect might be due to destabilization of the dimeric structure of 14-3-3 and/or conformational changes of the target-binding site. The mutation mimicking phosphorylation of Thr232 weakly affects interaction of 14-3-3 with both proteins. The mutation mimicking phosphorylation of Ser184 does not markedly affect interaction with tau protein and improves the interaction of 14-3-3 with HspB6. Thus, effect of 14-3-3 phosphorylation depends on the nature of the target protein and therefore, phosphorylation of 14-3-3 might affect its target specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号